用于装配微部件的微输送站

P. Hélin, M. Calin, V. Sadaune, N. Chaillet, C. Druon, A. Bourjault
{"title":"用于装配微部件的微输送站","authors":"P. Hélin, M. Calin, V. Sadaune, N. Chaillet, C. Druon, A. Bourjault","doi":"10.1109/IROS.1997.656439","DOIUrl":null,"url":null,"abstract":"This paper describes a micro-conveying station for micro-component assembly. It incorporates micro-grippers joined up a micro-conveyer stage. The micro-grippers are fabricated from a mechanical structure in polymer using micro-stereophotolithography process and actuated by shape memory alloy wires. The micro-grippers can work in a space of 10 mm diameter and can carry out opening and closing movements. Neural network identification and PID control are proposed for the closed-loop control the micro-grippers, and trajectory control is realized on one finger. The micro-conveyer stage uses surface acoustic waves generated from interdigital transducers to move a slider onto the surface of the substrate with a high degree of resolution (nanometer) and in several centimetres of operation length. A mechanical model for the energy transfer from the acoustic wave to the slider is proposed. A good agreement between the theory and the experiment is obtained.","PeriodicalId":408848,"journal":{"name":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Micro-conveying station for assembly of micro-components\",\"authors\":\"P. Hélin, M. Calin, V. Sadaune, N. Chaillet, C. Druon, A. Bourjault\",\"doi\":\"10.1109/IROS.1997.656439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a micro-conveying station for micro-component assembly. It incorporates micro-grippers joined up a micro-conveyer stage. The micro-grippers are fabricated from a mechanical structure in polymer using micro-stereophotolithography process and actuated by shape memory alloy wires. The micro-grippers can work in a space of 10 mm diameter and can carry out opening and closing movements. Neural network identification and PID control are proposed for the closed-loop control the micro-grippers, and trajectory control is realized on one finger. The micro-conveyer stage uses surface acoustic waves generated from interdigital transducers to move a slider onto the surface of the substrate with a high degree of resolution (nanometer) and in several centimetres of operation length. A mechanical model for the energy transfer from the acoustic wave to the slider is proposed. A good agreement between the theory and the experiment is obtained.\",\"PeriodicalId\":408848,\"journal\":{\"name\":\"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1997.656439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1997.656439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

介绍了一种用于微部件装配的微输送站。它结合了微型夹持器和微型传送带。该微夹持器由聚合物机械结构制成,采用微立体光刻工艺,由形状记忆合金丝驱动。微型夹持器可在直径10毫米的空间内工作,并可进行启闭动作。提出了基于神经网络辨识和PID控制的微夹持器闭环控制方法,实现了单指轨迹控制。微传送阶段使用由数字间换能器产生的表面声波将滑块移动到基材表面,具有高分辨率(纳米)和几厘米的操作长度。提出了声波向滑块传递能量的力学模型。理论与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micro-conveying station for assembly of micro-components
This paper describes a micro-conveying station for micro-component assembly. It incorporates micro-grippers joined up a micro-conveyer stage. The micro-grippers are fabricated from a mechanical structure in polymer using micro-stereophotolithography process and actuated by shape memory alloy wires. The micro-grippers can work in a space of 10 mm diameter and can carry out opening and closing movements. Neural network identification and PID control are proposed for the closed-loop control the micro-grippers, and trajectory control is realized on one finger. The micro-conveyer stage uses surface acoustic waves generated from interdigital transducers to move a slider onto the surface of the substrate with a high degree of resolution (nanometer) and in several centimetres of operation length. A mechanical model for the energy transfer from the acoustic wave to the slider is proposed. A good agreement between the theory and the experiment is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信