一个177 TOPS/W,基于电容的内存计算SRAM宏,具有逐步充放电dac和稀疏优化的bitcell,用于4位深度卷积神经网络

Bo Zhang, Jyotishman Saikia, Jian Meng, Dewei Wang, Soon-Chan Kwon, Sungmeen Myung, Hyunsoo Kim, Sang Joon Kim, Jae-sun Seo, Mingoo Seok
{"title":"一个177 TOPS/W,基于电容的内存计算SRAM宏,具有逐步充放电dac和稀疏优化的bitcell,用于4位深度卷积神经网络","authors":"Bo Zhang, Jyotishman Saikia, Jian Meng, Dewei Wang, Soon-Chan Kwon, Sungmeen Myung, Hyunsoo Kim, Sang Joon Kim, Jae-sun Seo, Mingoo Seok","doi":"10.1109/CICC53496.2022.9772781","DOIUrl":null,"url":null,"abstract":"Capacitor-based in-memory computing (IMC) SRAM has recently gained significant attention as it achieves high energy-efficiency for deep convolutional neural networks (DCNN) and robustness against PVT variations [1], [3], [7], [8]. To further improve energy-efficiency and robustness, we identify two places of bottleneck in prior capacitive IMC works, namely (i) input drivers (or digital-to-analog converters, DACs) which charge and discharge various capacitors, and (ii) analog-to-digital converters (ADCs) which convert analog voltage/current signals into digital values.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A 177 TOPS/W, Capacitor-based In-Memory Computing SRAM Macro with Stepwise-Charging/Discharging DACs and Sparsity-Optimized Bitcells for 4-Bit Deep Convolutional Neural Networks\",\"authors\":\"Bo Zhang, Jyotishman Saikia, Jian Meng, Dewei Wang, Soon-Chan Kwon, Sungmeen Myung, Hyunsoo Kim, Sang Joon Kim, Jae-sun Seo, Mingoo Seok\",\"doi\":\"10.1109/CICC53496.2022.9772781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capacitor-based in-memory computing (IMC) SRAM has recently gained significant attention as it achieves high energy-efficiency for deep convolutional neural networks (DCNN) and robustness against PVT variations [1], [3], [7], [8]. To further improve energy-efficiency and robustness, we identify two places of bottleneck in prior capacitive IMC works, namely (i) input drivers (or digital-to-analog converters, DACs) which charge and discharge various capacitors, and (ii) analog-to-digital converters (ADCs) which convert analog voltage/current signals into digital values.\",\"PeriodicalId\":415990,\"journal\":{\"name\":\"2022 IEEE Custom Integrated Circuits Conference (CICC)\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Custom Integrated Circuits Conference (CICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC53496.2022.9772781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

基于电容的内存计算(IMC) SRAM最近受到了广泛关注,因为它实现了深度卷积神经网络(DCNN)的高能效和对PVT变化的鲁棒性[1],[3],[7],[8]。为了进一步提高能源效率和稳健性,我们确定了先前电容式IMC工作中的两个瓶颈,即(i)对各种电容器进行充电和放电的输入驱动器(或数模转换器,dac)和(ii)将模拟电压/电流信号转换为数字值的模数转换器(adc)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 177 TOPS/W, Capacitor-based In-Memory Computing SRAM Macro with Stepwise-Charging/Discharging DACs and Sparsity-Optimized Bitcells for 4-Bit Deep Convolutional Neural Networks
Capacitor-based in-memory computing (IMC) SRAM has recently gained significant attention as it achieves high energy-efficiency for deep convolutional neural networks (DCNN) and robustness against PVT variations [1], [3], [7], [8]. To further improve energy-efficiency and robustness, we identify two places of bottleneck in prior capacitive IMC works, namely (i) input drivers (or digital-to-analog converters, DACs) which charge and discharge various capacitors, and (ii) analog-to-digital converters (ADCs) which convert analog voltage/current signals into digital values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信