{"title":"c-理想哈希的界","authors":"F. Frei, D. Wehner","doi":"10.48550/arXiv.2301.13832","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze hashing from a worst-case perspective. To this end, we study a new property of hash families that is strongly related to d-perfect hashing, namely c-ideality. On the one hand, this notion generalizes the definition of perfect hashing, which has been studied extensively; on the other hand, it provides a direct link to the notion of c-approximativity. We focus on the usually neglected case where the average load \\alpha is at least 1 and prove upper and lower parametrized bounds on the minimal size of c-ideal hash families. As an aside, we show how c-ideality helps to analyze the advice complexity of hashing. The concept of advice, introduced a decade ago, lets us measure the information content of an online problem. We prove hashing's advice complexity to be linear in the hash table size.","PeriodicalId":335412,"journal":{"name":"International Symposium on Fundamentals of Computation Theory","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds for c-Ideal Hashing\",\"authors\":\"F. Frei, D. Wehner\",\"doi\":\"10.48550/arXiv.2301.13832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze hashing from a worst-case perspective. To this end, we study a new property of hash families that is strongly related to d-perfect hashing, namely c-ideality. On the one hand, this notion generalizes the definition of perfect hashing, which has been studied extensively; on the other hand, it provides a direct link to the notion of c-approximativity. We focus on the usually neglected case where the average load \\\\alpha is at least 1 and prove upper and lower parametrized bounds on the minimal size of c-ideal hash families. As an aside, we show how c-ideality helps to analyze the advice complexity of hashing. The concept of advice, introduced a decade ago, lets us measure the information content of an online problem. We prove hashing's advice complexity to be linear in the hash table size.\",\"PeriodicalId\":335412,\"journal\":{\"name\":\"International Symposium on Fundamentals of Computation Theory\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Fundamentals of Computation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2301.13832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Fundamentals of Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.13832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we analyze hashing from a worst-case perspective. To this end, we study a new property of hash families that is strongly related to d-perfect hashing, namely c-ideality. On the one hand, this notion generalizes the definition of perfect hashing, which has been studied extensively; on the other hand, it provides a direct link to the notion of c-approximativity. We focus on the usually neglected case where the average load \alpha is at least 1 and prove upper and lower parametrized bounds on the minimal size of c-ideal hash families. As an aside, we show how c-ideality helps to analyze the advice complexity of hashing. The concept of advice, introduced a decade ago, lets us measure the information content of an online problem. We prove hashing's advice complexity to be linear in the hash table size.