基于模糊神经网络逆学习控制的开关磁阻电机转矩脉动最小化

Zheng Hongtao, Lin Feng, Liu Lian-gen, Jian Jingping, Xu Dehong
{"title":"基于模糊神经网络逆学习控制的开关磁阻电机转矩脉动最小化","authors":"Zheng Hongtao, Lin Feng, Liu Lian-gen, Jian Jingping, Xu Dehong","doi":"10.1109/PEDS.2003.1283148","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is the development of fuzzy-neural network (FNN) inverse learning control algorithms for torque-ripple minimization of SRMs. The approach consists of two FNN modules, which spare the same weight values. The learning FNN module is used to adjust the weight values on-line based on observations of the SRMs' (T-i-/spl theta/) input-output relationship in order to form an approximate dynamic inverse model i(T, /spl theta/) of SRMs. The controlling FNN module is used to predict the SRMs phase current waveforms required to follow a desired torque command. Detailed simulation results show good response characteristics for a four-phase SRM.","PeriodicalId":106054,"journal":{"name":"The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003.","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Torque ripple minimization in switched reluctance motors using fuzzy-neural network inverse learning control\",\"authors\":\"Zheng Hongtao, Lin Feng, Liu Lian-gen, Jian Jingping, Xu Dehong\",\"doi\":\"10.1109/PEDS.2003.1283148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is the development of fuzzy-neural network (FNN) inverse learning control algorithms for torque-ripple minimization of SRMs. The approach consists of two FNN modules, which spare the same weight values. The learning FNN module is used to adjust the weight values on-line based on observations of the SRMs' (T-i-/spl theta/) input-output relationship in order to form an approximate dynamic inverse model i(T, /spl theta/) of SRMs. The controlling FNN module is used to predict the SRMs phase current waveforms required to follow a desired torque command. Detailed simulation results show good response characteristics for a four-phase SRM.\",\"PeriodicalId\":106054,\"journal\":{\"name\":\"The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003.\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDS.2003.1283148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDS.2003.1283148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文的目的是发展模糊神经网络(FNN)逆学习控制算法,用于srm的转矩脉动最小化。该方法由两个FNN模块组成,它们保留相同的权值。学习FNN模块根据srm的(T-i-/spl theta/)输入输出关系的观测值在线调整权值,形成srm的近似动态逆模型i(T, /spl theta/)。控制FNN模块用于预测SRMs相电流波形,以遵循所需的转矩命令。详细的仿真结果表明,四相SRM具有良好的响应特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torque ripple minimization in switched reluctance motors using fuzzy-neural network inverse learning control
The purpose of this paper is the development of fuzzy-neural network (FNN) inverse learning control algorithms for torque-ripple minimization of SRMs. The approach consists of two FNN modules, which spare the same weight values. The learning FNN module is used to adjust the weight values on-line based on observations of the SRMs' (T-i-/spl theta/) input-output relationship in order to form an approximate dynamic inverse model i(T, /spl theta/) of SRMs. The controlling FNN module is used to predict the SRMs phase current waveforms required to follow a desired torque command. Detailed simulation results show good response characteristics for a four-phase SRM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信