{"title":"Сингулярность XXI века в контексте Большой истории: математический анализ","authors":"Андрей Коротаев","doi":"10.22339/JBH.V2I3.2310","DOIUrl":null,"url":null,"abstract":"Представление о том, что в ближайшее время нас ждет некая «Сингулярность», стало в последнее время достаточно популярным, прежде всего благодаря деятельности технического директора Google в области технического обучения Рэймонда Курцвейла и его книге The Singularity Is Near (2005). Показано, что математический анализ приводимого им ряда событий, начинающегося с возникновения нашей Галактики и заканчивающегося расшифровкой кода ДНК, действительно практически идеально описывается (неизвестной самому Курцвейлу) крайне простой математической функцией с сингулярностью в районе 2029 г. Показано также, что составленный в начале 2000-х (совершенно независимо от Курцвейла) российким физиком А. Д. Пановым аналогичный временной ряд (начинающийся с возникновения жизни на Земле и заканчивающийся информационной революцией) также практически идеально описывается (не использованной А. Д. Пановом) математической функцией (крайне сходной с вышеупомянутой) с сингулярностью в районе 2027 г. Показано, что эта функция также чрезвычайно сходна с уравнением, открытым в 1960 г. Х. фон Ферстером, показавшим в своей знаменитой статье в журнале Science, что она практически идеально описывает динамику численности населения и характеризуется математической сингулярностью в районе 2027 г. Все это говорит о наличии достаточно строгих глобальных макроэволюционных закономерностей, которые могут удивительно точно описываться крайне простыми математическими функциями. Вместе с тем продемонстрировано, что в районе точки сингулярности нет основания вслед за Курцвейлом ожидать невиданного (на много порядков) ускорения темпов технологического развития; имеются бoльшие основания интерпретировать эту точку как индикатор зоны перегиба, после прохождения которой темпы глобальной эволюции будут систематически в долгосрочной перспективе замедляться.","PeriodicalId":326067,"journal":{"name":"Journal of Big History","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big History","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22339/JBH.V2I3.2310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
谷歌技术总监雷蒙德·库兹韦尔(raymond kurzweil)和他的书《独行侠》(2005)最近很受欢迎。他对一系列事件的数学分析,从我们星系的起源到dna密码的解码,几乎完美地描述了一个非常简单的数学函数,在2029年左右出现了奇点,编制2000年代初(完全独立于物理kurzweil)российкa.d.斯托类似地球上生命起源的时间序列(始于完美描述和信息革命的结束)也几乎没有使用(a . d .斯托)数学函数(非常类似于上述地区)和奇点2027年表明,这个功能也非常类似于1960年,h . vonферстер开放,方程《科学》杂志的一篇著名文章指出,它几乎完美地描述了人口动态,并描述了2027年左右的数学奇点。所有这些都表明,全球宏观进化模式非常严格,可以用非常简单的数学功能来精确地描述。然而,在奇点附近没有证据表明,在库兹韦尔之后,预计技术发展速度将达到前所未有的(多数量级)。有充分的理由将这一观点解释为一个跨境指标,一旦跨过,全球进化的速度将系统性地长期放缓。
Сингулярность XXI века в контексте Большой истории: математический анализ
Представление о том, что в ближайшее время нас ждет некая «Сингулярность», стало в последнее время достаточно популярным, прежде всего благодаря деятельности технического директора Google в области технического обучения Рэймонда Курцвейла и его книге The Singularity Is Near (2005). Показано, что математический анализ приводимого им ряда событий, начинающегося с возникновения нашей Галактики и заканчивающегося расшифровкой кода ДНК, действительно практически идеально описывается (неизвестной самому Курцвейлу) крайне простой математической функцией с сингулярностью в районе 2029 г. Показано также, что составленный в начале 2000-х (совершенно независимо от Курцвейла) российким физиком А. Д. Пановым аналогичный временной ряд (начинающийся с возникновения жизни на Земле и заканчивающийся информационной революцией) также практически идеально описывается (не использованной А. Д. Пановом) математической функцией (крайне сходной с вышеупомянутой) с сингулярностью в районе 2027 г. Показано, что эта функция также чрезвычайно сходна с уравнением, открытым в 1960 г. Х. фон Ферстером, показавшим в своей знаменитой статье в журнале Science, что она практически идеально описывает динамику численности населения и характеризуется математической сингулярностью в районе 2027 г. Все это говорит о наличии достаточно строгих глобальных макроэволюционных закономерностей, которые могут удивительно точно описываться крайне простыми математическими функциями. Вместе с тем продемонстрировано, что в районе точки сингулярности нет основания вслед за Курцвейлом ожидать невиданного (на много порядков) ускорения темпов технологического развития; имеются бoльшие основания интерпретировать эту точку как индикатор зоны перегиба, после прохождения которой темпы глобальной эволюции будут систематически в долгосрочной перспективе замедляться.