曲面曲率估计的统计

A. Hilton, J. Illingworth, T. Windeatt
{"title":"曲面曲率估计的统计","authors":"A. Hilton, J. Illingworth, T. Windeatt","doi":"10.1109/ICPR.1994.576222","DOIUrl":null,"url":null,"abstract":"Reliable curvature estimation is an important goal in image analysis to provide viewpoint independent cues for shape classification. This paper presents a model of the relationship between the variance of curvature estimates and the image noise. Agreement to within 10% is obtained for 3D range data. Previous models have only provided qualitative agreement with experimental observations. A perturbation error analysis is performed on the local least square surface fitting algorithm which is commonly used to obtain partial derivative estimates in the presence of noise.","PeriodicalId":312019,"journal":{"name":"Proceedings of 12th International Conference on Pattern Recognition","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Statistics of surface curvature estimates\",\"authors\":\"A. Hilton, J. Illingworth, T. Windeatt\",\"doi\":\"10.1109/ICPR.1994.576222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable curvature estimation is an important goal in image analysis to provide viewpoint independent cues for shape classification. This paper presents a model of the relationship between the variance of curvature estimates and the image noise. Agreement to within 10% is obtained for 3D range data. Previous models have only provided qualitative agreement with experimental observations. A perturbation error analysis is performed on the local least square surface fitting algorithm which is commonly used to obtain partial derivative estimates in the presence of noise.\",\"PeriodicalId\":312019,\"journal\":{\"name\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1994.576222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 12th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

可靠的曲率估计是图像分析的重要目标,为图像的形状分类提供视点无关的线索。本文提出了曲率估计方差与图像噪声之间的关系模型。在3D距离数据中获得10%以内的协议。以前的模型只提供了与实验观察的定性一致。对局部最小二乘曲面拟合算法进行了摄动误差分析,该算法通常用于在存在噪声的情况下获得偏导数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistics of surface curvature estimates
Reliable curvature estimation is an important goal in image analysis to provide viewpoint independent cues for shape classification. This paper presents a model of the relationship between the variance of curvature estimates and the image noise. Agreement to within 10% is obtained for 3D range data. Previous models have only provided qualitative agreement with experimental observations. A perturbation error analysis is performed on the local least square surface fitting algorithm which is commonly used to obtain partial derivative estimates in the presence of noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信