{"title":"HppCnn:用于gpgpu的高性能、便携式深度学习库","authors":"Yi Yang, Min Feng, S. Chakradhar","doi":"10.1109/ICPP.2016.73","DOIUrl":null,"url":null,"abstract":"The massively parallel computation capability has made GPGPUs a promising platform for convolutional neural networks (CNNs). In this paper, we present HppCnn, a CNN library achieves both the high performance and portability on GPGPUs. In HppCnn, we propose a novel three-step approach to implement convolutional kernels using Nvidia cuBLAS efficiently. To overcome limitations of our three-step approach, we improve cuBLAS by enabling nested parallelism, and implement a low-cost auto-tuning module to leveraging existing libraries in the runtime. The experiments show HppCnn achieves significant speedups over both other cuBLAS-based and hand-optimized solutions. The results also show our solution delivers near-optimal performance on GPUs with the portability.","PeriodicalId":409991,"journal":{"name":"2016 45th International Conference on Parallel Processing (ICPP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"HppCnn: A High-Performance, Portable Deep-Learning Library for GPGPUs\",\"authors\":\"Yi Yang, Min Feng, S. Chakradhar\",\"doi\":\"10.1109/ICPP.2016.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The massively parallel computation capability has made GPGPUs a promising platform for convolutional neural networks (CNNs). In this paper, we present HppCnn, a CNN library achieves both the high performance and portability on GPGPUs. In HppCnn, we propose a novel three-step approach to implement convolutional kernels using Nvidia cuBLAS efficiently. To overcome limitations of our three-step approach, we improve cuBLAS by enabling nested parallelism, and implement a low-cost auto-tuning module to leveraging existing libraries in the runtime. The experiments show HppCnn achieves significant speedups over both other cuBLAS-based and hand-optimized solutions. The results also show our solution delivers near-optimal performance on GPUs with the portability.\",\"PeriodicalId\":409991,\"journal\":{\"name\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2016.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 45th International Conference on Parallel Processing (ICPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2016.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HppCnn: A High-Performance, Portable Deep-Learning Library for GPGPUs
The massively parallel computation capability has made GPGPUs a promising platform for convolutional neural networks (CNNs). In this paper, we present HppCnn, a CNN library achieves both the high performance and portability on GPGPUs. In HppCnn, we propose a novel three-step approach to implement convolutional kernels using Nvidia cuBLAS efficiently. To overcome limitations of our three-step approach, we improve cuBLAS by enabling nested parallelism, and implement a low-cost auto-tuning module to leveraging existing libraries in the runtime. The experiments show HppCnn achieves significant speedups over both other cuBLAS-based and hand-optimized solutions. The results also show our solution delivers near-optimal performance on GPUs with the portability.