HppCnn:用于gpgpu的高性能、便携式深度学习库

Yi Yang, Min Feng, S. Chakradhar
{"title":"HppCnn:用于gpgpu的高性能、便携式深度学习库","authors":"Yi Yang, Min Feng, S. Chakradhar","doi":"10.1109/ICPP.2016.73","DOIUrl":null,"url":null,"abstract":"The massively parallel computation capability has made GPGPUs a promising platform for convolutional neural networks (CNNs). In this paper, we present HppCnn, a CNN library achieves both the high performance and portability on GPGPUs. In HppCnn, we propose a novel three-step approach to implement convolutional kernels using Nvidia cuBLAS efficiently. To overcome limitations of our three-step approach, we improve cuBLAS by enabling nested parallelism, and implement a low-cost auto-tuning module to leveraging existing libraries in the runtime. The experiments show HppCnn achieves significant speedups over both other cuBLAS-based and hand-optimized solutions. The results also show our solution delivers near-optimal performance on GPUs with the portability.","PeriodicalId":409991,"journal":{"name":"2016 45th International Conference on Parallel Processing (ICPP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"HppCnn: A High-Performance, Portable Deep-Learning Library for GPGPUs\",\"authors\":\"Yi Yang, Min Feng, S. Chakradhar\",\"doi\":\"10.1109/ICPP.2016.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The massively parallel computation capability has made GPGPUs a promising platform for convolutional neural networks (CNNs). In this paper, we present HppCnn, a CNN library achieves both the high performance and portability on GPGPUs. In HppCnn, we propose a novel three-step approach to implement convolutional kernels using Nvidia cuBLAS efficiently. To overcome limitations of our three-step approach, we improve cuBLAS by enabling nested parallelism, and implement a low-cost auto-tuning module to leveraging existing libraries in the runtime. The experiments show HppCnn achieves significant speedups over both other cuBLAS-based and hand-optimized solutions. The results also show our solution delivers near-optimal performance on GPUs with the portability.\",\"PeriodicalId\":409991,\"journal\":{\"name\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2016.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 45th International Conference on Parallel Processing (ICPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2016.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

大规模并行计算能力使gpgpu成为卷积神经网络(cnn)的一个很有前途的平台。在本文中,我们提出了一个在gpgpu上实现高性能和可移植性的CNN库HppCnn。在HppCnn中,我们提出了一种新颖的三步方法,使用Nvidia cuBLAS高效地实现卷积核。为了克服我们的三步方法的局限性,我们通过启用嵌套并行性来改进cuBLAS,并实现一个低成本的自动调优模块,以便在运行时中利用现有的库。实验表明,与其他基于cublas和手动优化的解决方案相比,HppCnn实现了显著的加速。结果还表明,我们的解决方案在gpu上提供了近乎最佳的性能和可移植性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HppCnn: A High-Performance, Portable Deep-Learning Library for GPGPUs
The massively parallel computation capability has made GPGPUs a promising platform for convolutional neural networks (CNNs). In this paper, we present HppCnn, a CNN library achieves both the high performance and portability on GPGPUs. In HppCnn, we propose a novel three-step approach to implement convolutional kernels using Nvidia cuBLAS efficiently. To overcome limitations of our three-step approach, we improve cuBLAS by enabling nested parallelism, and implement a low-cost auto-tuning module to leveraging existing libraries in the runtime. The experiments show HppCnn achieves significant speedups over both other cuBLAS-based and hand-optimized solutions. The results also show our solution delivers near-optimal performance on GPUs with the portability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信