基于注意机制的深度卷积递归神经网络鲁棒语音情感识别

Che-Wei Huang, Shrikanth S. Narayanan
{"title":"基于注意机制的深度卷积递归神经网络鲁棒语音情感识别","authors":"Che-Wei Huang, Shrikanth S. Narayanan","doi":"10.1109/ICME.2017.8019296","DOIUrl":null,"url":null,"abstract":"We present a deep convolutional recurrent neural network for speech emotion recognition based on the log-Mel filterbank energies, where the convolutional layers are responsible for the discriminative feature learning. Based on the hypothesis that a better understanding of the internal configuration within an utterance would help reduce misclassification, we further propose a convolutional attention mechanism to learn the utterance structure relevant to the task. In addition, we quantitatively measure the performance gain contributed by each module in our model in order to characterize the nature of emotion expressed in speech. The experimental results on the eNTERFACE'05 emotion database validate our hypothesis and also demonstrate an absolute improvement by 4.62% compared to the state-of-the-art approach.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition\",\"authors\":\"Che-Wei Huang, Shrikanth S. Narayanan\",\"doi\":\"10.1109/ICME.2017.8019296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a deep convolutional recurrent neural network for speech emotion recognition based on the log-Mel filterbank energies, where the convolutional layers are responsible for the discriminative feature learning. Based on the hypothesis that a better understanding of the internal configuration within an utterance would help reduce misclassification, we further propose a convolutional attention mechanism to learn the utterance structure relevant to the task. In addition, we quantitatively measure the performance gain contributed by each module in our model in order to characterize the nature of emotion expressed in speech. The experimental results on the eNTERFACE'05 emotion database validate our hypothesis and also demonstrate an absolute improvement by 4.62% compared to the state-of-the-art approach.\",\"PeriodicalId\":330977,\"journal\":{\"name\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2017.8019296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

摘要

我们提出了一个基于log-Mel滤波器组能量的深度卷积递归神经网络用于语音情感识别,其中卷积层负责判别特征学习。基于更好地理解话语内部结构有助于减少错误分类的假设,我们进一步提出了一种卷积注意机制来学习与任务相关的话语结构。此外,我们定量测量了模型中每个模块贡献的性能增益,以表征语音中表达的情感的性质。在eNTERFACE'05情绪数据库上的实验结果验证了我们的假设,并且与最先进的方法相比,也证明了4.62%的绝对改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition
We present a deep convolutional recurrent neural network for speech emotion recognition based on the log-Mel filterbank energies, where the convolutional layers are responsible for the discriminative feature learning. Based on the hypothesis that a better understanding of the internal configuration within an utterance would help reduce misclassification, we further propose a convolutional attention mechanism to learn the utterance structure relevant to the task. In addition, we quantitatively measure the performance gain contributed by each module in our model in order to characterize the nature of emotion expressed in speech. The experimental results on the eNTERFACE'05 emotion database validate our hypothesis and also demonstrate an absolute improvement by 4.62% compared to the state-of-the-art approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信