乳腺超声图像腺体分割

Rui Braz, António M. G. Pinheiro, J. Moutinho, M. Freire, Manuela Pereira
{"title":"乳腺超声图像腺体分割","authors":"Rui Braz, António M. G. Pinheiro, J. Moutinho, M. Freire, Manuela Pereira","doi":"10.1109/MLSP.2012.6349748","DOIUrl":null,"url":null,"abstract":"This paper introduces a study for the segmentation of the breast ultrasound images. The objective is to separate the breast gland, which is the region of interest for the breast cancer diagnosis, from other tissues. Images are pre-processed with four different algorithms that consider the image surrounding: speckle reducing anisotropic diffusion, homomorphic filter, Perona and Malik non-linear diffusion and Moran index. For each image pixel a four bins descriptor is created composed by the corresponding pixels of each of these preprocessed images.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Breast ultrasound images gland segmentation\",\"authors\":\"Rui Braz, António M. G. Pinheiro, J. Moutinho, M. Freire, Manuela Pereira\",\"doi\":\"10.1109/MLSP.2012.6349748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a study for the segmentation of the breast ultrasound images. The objective is to separate the breast gland, which is the region of interest for the breast cancer diagnosis, from other tissues. Images are pre-processed with four different algorithms that consider the image surrounding: speckle reducing anisotropic diffusion, homomorphic filter, Perona and Malik non-linear diffusion and Moran index. For each image pixel a four bins descriptor is created composed by the corresponding pixels of each of these preprocessed images.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文对乳腺超声图像的分割进行了研究。目的是将乳腺从其他组织中分离出来,乳腺是诊断乳腺癌的重要部位。采用四种不同的算法对图像进行预处理,这些算法考虑了图像周围的因素:散斑减少各向异性扩散、同态滤波、Perona和Malik非线性扩散和Moran指数。对于每个图像像素,由每个预处理图像的相应像素组成一个四箱描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breast ultrasound images gland segmentation
This paper introduces a study for the segmentation of the breast ultrasound images. The objective is to separate the breast gland, which is the region of interest for the breast cancer diagnosis, from other tissues. Images are pre-processed with four different algorithms that consider the image surrounding: speckle reducing anisotropic diffusion, homomorphic filter, Perona and Malik non-linear diffusion and Moran index. For each image pixel a four bins descriptor is created composed by the corresponding pixels of each of these preprocessed images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信