基于分数的图像到图像的同步扩散回归

Hao Xin, M. Zhu
{"title":"基于分数的图像到图像的同步扩散回归","authors":"Hao Xin, M. Zhu","doi":"10.1109/ICMLA55696.2022.00056","DOIUrl":null,"url":null,"abstract":"Image-to-image regression is an important computer vision task. In this paper, we propose a novel image-to-image regression model following the recent trend in generative modeling that employs Stochastic Differential Equations (SDEs) and score matching. We first apply diffusion processes to regression data using designed SDEs, and then perform inference by gradually reversing the processes. In particular, our method uses synchronized diffusion, which simultaneously applies diffusion to both input and response images to stabilize diffusion and subsequent parameter learning. Furthermore, based on the Expectation-Maximization (EM) algorithm, we develop an effective algorithm for prediction. We implement a conditional U-Net architecture with pre-trained DenseNet encoder for our proposed model and refer to it as DenseSocre. Our new model is able to generate diverse outcomes for image colorization, and the proposed prediction algorithm is able to achieve close to state-of-art performance on high-resolution monocular depth estimation.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Score-based Image-to-Image Regression with Synchronized Diffusion\",\"authors\":\"Hao Xin, M. Zhu\",\"doi\":\"10.1109/ICMLA55696.2022.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image-to-image regression is an important computer vision task. In this paper, we propose a novel image-to-image regression model following the recent trend in generative modeling that employs Stochastic Differential Equations (SDEs) and score matching. We first apply diffusion processes to regression data using designed SDEs, and then perform inference by gradually reversing the processes. In particular, our method uses synchronized diffusion, which simultaneously applies diffusion to both input and response images to stabilize diffusion and subsequent parameter learning. Furthermore, based on the Expectation-Maximization (EM) algorithm, we develop an effective algorithm for prediction. We implement a conditional U-Net architecture with pre-trained DenseNet encoder for our proposed model and refer to it as DenseSocre. Our new model is able to generate diverse outcomes for image colorization, and the proposed prediction algorithm is able to achieve close to state-of-art performance on high-resolution monocular depth estimation.\",\"PeriodicalId\":128160,\"journal\":{\"name\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"219 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA55696.2022.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像到图像的回归是一项重要的计算机视觉任务。在本文中,我们提出了一种新的图像到图像回归模型,该模型采用随机微分方程(SDEs)和分数匹配,顺应了生成模型的最新趋势。我们首先使用设计的SDEs将扩散过程应用于回归数据,然后通过逐渐逆转过程来进行推理。特别是,我们的方法使用同步扩散,它同时对输入和响应图像应用扩散,以稳定扩散和随后的参数学习。在期望最大化算法的基础上,提出了一种有效的预测算法。我们为我们提出的模型实现了一个条件U-Net架构和预训练的DenseNet编码器,并将其称为DenseSocre。我们的新模型能够生成不同的图像着色结果,并且所提出的预测算法能够在高分辨率单目深度估计上实现接近最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Score-based Image-to-Image Regression with Synchronized Diffusion
Image-to-image regression is an important computer vision task. In this paper, we propose a novel image-to-image regression model following the recent trend in generative modeling that employs Stochastic Differential Equations (SDEs) and score matching. We first apply diffusion processes to regression data using designed SDEs, and then perform inference by gradually reversing the processes. In particular, our method uses synchronized diffusion, which simultaneously applies diffusion to both input and response images to stabilize diffusion and subsequent parameter learning. Furthermore, based on the Expectation-Maximization (EM) algorithm, we develop an effective algorithm for prediction. We implement a conditional U-Net architecture with pre-trained DenseNet encoder for our proposed model and refer to it as DenseSocre. Our new model is able to generate diverse outcomes for image colorization, and the proposed prediction algorithm is able to achieve close to state-of-art performance on high-resolution monocular depth estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信