MECBench:多访问边缘计算平台的基准测试框架

Omar Naman, H. Qadi, M. Karsten, S. Al-Kiswany
{"title":"MECBench:多访问边缘计算平台的基准测试框架","authors":"Omar Naman, H. Qadi, M. Karsten, S. Al-Kiswany","doi":"10.1109/EDGE60047.2023.00024","DOIUrl":null,"url":null,"abstract":"We present MECBench, an extensible benchmarking framework for multi-access edge computing. MECBench is configurable, and can emulate networks with different capabilities and conditions, can scale the generated workloads to mimic a large number of clients, and can generate a range of workload patterns. MECBench is extensible; it can be extended to change the generated workload, use new datasets, and integrate new applications. MECBench’s implementation includes machine learning and synthetic edge applications.We demonstrate MECBench’s capabilities through two scenarios: an object detection scheme for drone navigation and a natural language processing application. Our evaluation shows that MECBench can be used to answer complex what-if questions pertaining to design and deployment decisions of MEC platforms and applications. Our evaluation explores the impact of different combinations of applications, hardware, and network conditions, as well as the cost-benefit tradeoff of different designs and configurations.","PeriodicalId":369407,"journal":{"name":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MECBench: A Framework for Benchmarking Multi-Access Edge Computing Platforms\",\"authors\":\"Omar Naman, H. Qadi, M. Karsten, S. Al-Kiswany\",\"doi\":\"10.1109/EDGE60047.2023.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present MECBench, an extensible benchmarking framework for multi-access edge computing. MECBench is configurable, and can emulate networks with different capabilities and conditions, can scale the generated workloads to mimic a large number of clients, and can generate a range of workload patterns. MECBench is extensible; it can be extended to change the generated workload, use new datasets, and integrate new applications. MECBench’s implementation includes machine learning and synthetic edge applications.We demonstrate MECBench’s capabilities through two scenarios: an object detection scheme for drone navigation and a natural language processing application. Our evaluation shows that MECBench can be used to answer complex what-if questions pertaining to design and deployment decisions of MEC platforms and applications. Our evaluation explores the impact of different combinations of applications, hardware, and network conditions, as well as the cost-benefit tradeoff of different designs and configurations.\",\"PeriodicalId\":369407,\"journal\":{\"name\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDGE60047.2023.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE60047.2023.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出MECBench,一个可扩展的多访问边缘计算基准测试框架。MECBench是可配置的,可以模拟具有不同功能和条件的网络,可以扩展生成的工作负载以模拟大量客户端,并且可以生成一系列工作负载模式。MECBench是可扩展的;可以对其进行扩展,以更改生成的工作负载、使用新的数据集和集成新的应用程序。MECBench的实现包括机器学习和合成边缘应用。我们通过两个场景展示MECBench的功能:无人机导航的目标检测方案和自然语言处理应用程序。我们的评估表明,MECBench可以用来回答与MEC平台和应用程序的设计和部署决策有关的复杂的假设问题。我们的评估探讨了应用程序、硬件和网络条件的不同组合的影响,以及不同设计和配置的成本效益权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MECBench: A Framework for Benchmarking Multi-Access Edge Computing Platforms
We present MECBench, an extensible benchmarking framework for multi-access edge computing. MECBench is configurable, and can emulate networks with different capabilities and conditions, can scale the generated workloads to mimic a large number of clients, and can generate a range of workload patterns. MECBench is extensible; it can be extended to change the generated workload, use new datasets, and integrate new applications. MECBench’s implementation includes machine learning and synthetic edge applications.We demonstrate MECBench’s capabilities through two scenarios: an object detection scheme for drone navigation and a natural language processing application. Our evaluation shows that MECBench can be used to answer complex what-if questions pertaining to design and deployment decisions of MEC platforms and applications. Our evaluation explores the impact of different combinations of applications, hardware, and network conditions, as well as the cost-benefit tradeoff of different designs and configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信