跨语言TTS的KL分化和DNN方法

Fenglong Xie, F. Soong, Haifeng Li
{"title":"跨语言TTS的KL分化和DNN方法","authors":"Fenglong Xie, F. Soong, Haifeng Li","doi":"10.1109/ICASSP.2016.7472732","DOIUrl":null,"url":null,"abstract":"We propose a Kullback-Leibler divergence (KLD) and deep neural net (DNN) based approach to cross-lingual TTS (CL-TTS) training. A speaker independent DNN (SI-DNN) ASR is used to equalize the speaker difference between a source speaker in L1 and a reference speaker in L2. Two speaker dependent GMM-HMM parametric TTS systems are first trained in the respective languages. The senones sets of the two TTS are matched in the SI-DNN ASR in terms of their output posteriors distributions in KLD. The minimum KLD criterion is used to transform the senones in the source speaker's TTS (L1) to the corresponding \"closest\" senones in the target language (L2). The new CL-TTS thus trained has been shown to achieve high speaker similarity to the source speaker in L1 while high intelligibility and naturalness are preserved. For untranscribed source speaker's recordings, say, conversational speech, a frame mapping, instead of \"senone mapping\" is also proposed to achieve a high but slightly inferior CL-TTS.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A KL divergence and DNN approach to cross-lingual TTS\",\"authors\":\"Fenglong Xie, F. Soong, Haifeng Li\",\"doi\":\"10.1109/ICASSP.2016.7472732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a Kullback-Leibler divergence (KLD) and deep neural net (DNN) based approach to cross-lingual TTS (CL-TTS) training. A speaker independent DNN (SI-DNN) ASR is used to equalize the speaker difference between a source speaker in L1 and a reference speaker in L2. Two speaker dependent GMM-HMM parametric TTS systems are first trained in the respective languages. The senones sets of the two TTS are matched in the SI-DNN ASR in terms of their output posteriors distributions in KLD. The minimum KLD criterion is used to transform the senones in the source speaker's TTS (L1) to the corresponding \\\"closest\\\" senones in the target language (L2). The new CL-TTS thus trained has been shown to achieve high speaker similarity to the source speaker in L1 while high intelligibility and naturalness are preserved. For untranscribed source speaker's recordings, say, conversational speech, a frame mapping, instead of \\\"senone mapping\\\" is also proposed to achieve a high but slightly inferior CL-TTS.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

我们提出了一种基于Kullback-Leibler散度(KLD)和深度神经网络(DNN)的跨语言TTS (CL-TTS)训练方法。独立于扬声器的DNN (SI-DNN) ASR用于平衡L1源扬声器和L2参考扬声器之间的扬声器差。首先用各自的语言训练两个与说话人相关的GMM-HMM参数TTS系统。两个TTS的senones集合在SI-DNN ASR中在KLD中的输出后验分布是匹配的。最小KLD标准用于将源说话人的TTS (L1)中的senones转换为目标语言(L2)中相应的“最接近”senones。经过训练的新CL-TTS在保持高清晰度和自然度的同时,在L1中实现了与源说话人的高相似度。对于未转录的源说话者的录音,例如,会话语音,也建议采用帧映射而不是“senone映射”来实现高但略差的CL-TTS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A KL divergence and DNN approach to cross-lingual TTS
We propose a Kullback-Leibler divergence (KLD) and deep neural net (DNN) based approach to cross-lingual TTS (CL-TTS) training. A speaker independent DNN (SI-DNN) ASR is used to equalize the speaker difference between a source speaker in L1 and a reference speaker in L2. Two speaker dependent GMM-HMM parametric TTS systems are first trained in the respective languages. The senones sets of the two TTS are matched in the SI-DNN ASR in terms of their output posteriors distributions in KLD. The minimum KLD criterion is used to transform the senones in the source speaker's TTS (L1) to the corresponding "closest" senones in the target language (L2). The new CL-TTS thus trained has been shown to achieve high speaker similarity to the source speaker in L1 while high intelligibility and naturalness are preserved. For untranscribed source speaker's recordings, say, conversational speech, a frame mapping, instead of "senone mapping" is also proposed to achieve a high but slightly inferior CL-TTS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信