{"title":"$(k,\\mu)$-副接触流形满足某些曲率条件","authors":"Pakize Uygun, M. Atc̣eken","doi":"10.47000/tjmcs.1153650","DOIUrl":null,"url":null,"abstract":"In this work, we studied the curvature tensors of (k,$\\mu$) satisfying the conditions $\\widetilde{Z}(\\xi ,\\alpha _{3})\\cdot P=0$, $\\widetilde{Z}(\\xi ,\\alpha _{3})\\cdot S=0$, $R(\\xi ,\\alpha _{3})\\cdot P=0$, $R(\\xi ,\\alpha _{3})\\cdot S=0$ and $P\\cdot C=0$. Besides this, we classify $(k,\\mu)$-paracontact manifolds. Also we researched conformally flat and $\\phi $-conformally flat a $(k,\\mu )-$paracontact metric manifolds.","PeriodicalId":177259,"journal":{"name":"Turkish Journal of Mathematics and Computer Science","volume":"16 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On $(k,\\\\mu )$-Paracontact Manifold Satisfying Some Curvature Conditions\",\"authors\":\"Pakize Uygun, M. Atc̣eken\",\"doi\":\"10.47000/tjmcs.1153650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we studied the curvature tensors of (k,$\\\\mu$) satisfying the conditions $\\\\widetilde{Z}(\\\\xi ,\\\\alpha _{3})\\\\cdot P=0$, $\\\\widetilde{Z}(\\\\xi ,\\\\alpha _{3})\\\\cdot S=0$, $R(\\\\xi ,\\\\alpha _{3})\\\\cdot P=0$, $R(\\\\xi ,\\\\alpha _{3})\\\\cdot S=0$ and $P\\\\cdot C=0$. Besides this, we classify $(k,\\\\mu)$-paracontact manifolds. Also we researched conformally flat and $\\\\phi $-conformally flat a $(k,\\\\mu )-$paracontact metric manifolds.\",\"PeriodicalId\":177259,\"journal\":{\"name\":\"Turkish Journal of Mathematics and Computer Science\",\"volume\":\"16 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47000/tjmcs.1153650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47000/tjmcs.1153650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On $(k,\mu )$-Paracontact Manifold Satisfying Some Curvature Conditions
In this work, we studied the curvature tensors of (k,$\mu$) satisfying the conditions $\widetilde{Z}(\xi ,\alpha _{3})\cdot P=0$, $\widetilde{Z}(\xi ,\alpha _{3})\cdot S=0$, $R(\xi ,\alpha _{3})\cdot P=0$, $R(\xi ,\alpha _{3})\cdot S=0$ and $P\cdot C=0$. Besides this, we classify $(k,\mu)$-paracontact manifolds. Also we researched conformally flat and $\phi $-conformally flat a $(k,\mu )-$paracontact metric manifolds.