近保角β函数的案例研究

Z. Fodor, K. Holland, J. Kuti, D. Nógrádi, C. Wong
{"title":"近保角β函数的案例研究","authors":"Z. Fodor, K. Holland, J. Kuti, D. Nógrádi, C. Wong","doi":"10.22323/1.363.0121","DOIUrl":null,"url":null,"abstract":"We present updated results for the non-perturbative $\\beta$-function of SU(3) gauge theories with $N_f = 12$ or 10 massless flavors in the fundamental rep or $N_f = 2$ in the sextet rep, measured with staggered fermions. New data at finer lattice spacing and our previously introduced method, the infinitesimal $\\beta$-function, strengthen the case that the $N_f = 12$ model has no infrared fixed point up to $g^2 = 7.2$. We show how underestimated cutoff dependence in one domain wall study for $N_f = 10$ has been corrected, which is now consistent with staggered results showing a monotonically increasing $\\beta$-function. A consistent theme is that too small volumes can lead to apparent fixed points which vanish towards the continuum limit. We also apply the infinitesimal $\\beta$-function method to the $N_f = 10$ model, finding consistent behavior with the finite-step $\\beta$-function. Ongoing simulations and analysis for the sextet model confirm our previous results from weak to strong coupling with a non-zero $\\beta$-function throughout, in quantitative difference to Wilson fermion simulations~\\cite{Hasenfratz:2015ssa}.","PeriodicalId":147987,"journal":{"name":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Case studies of near-conformal beta-functions\",\"authors\":\"Z. Fodor, K. Holland, J. Kuti, D. Nógrádi, C. Wong\",\"doi\":\"10.22323/1.363.0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present updated results for the non-perturbative $\\\\beta$-function of SU(3) gauge theories with $N_f = 12$ or 10 massless flavors in the fundamental rep or $N_f = 2$ in the sextet rep, measured with staggered fermions. New data at finer lattice spacing and our previously introduced method, the infinitesimal $\\\\beta$-function, strengthen the case that the $N_f = 12$ model has no infrared fixed point up to $g^2 = 7.2$. We show how underestimated cutoff dependence in one domain wall study for $N_f = 10$ has been corrected, which is now consistent with staggered results showing a monotonically increasing $\\\\beta$-function. A consistent theme is that too small volumes can lead to apparent fixed points which vanish towards the continuum limit. We also apply the infinitesimal $\\\\beta$-function method to the $N_f = 10$ model, finding consistent behavior with the finite-step $\\\\beta$-function. Ongoing simulations and analysis for the sextet model confirm our previous results from weak to strong coupling with a non-zero $\\\\beta$-function throughout, in quantitative difference to Wilson fermion simulations~\\\\cite{Hasenfratz:2015ssa}.\",\"PeriodicalId\":147987,\"journal\":{\"name\":\"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.363.0121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了用交错费米子测量的SU(3)规范理论的非微扰$\beta$ -函数的最新结果,这些理论在基本代表中具有$N_f = 12$或10个无质量味,在六元代表中具有$N_f = 2$。新的数据在更细的晶格间距和我们之前介绍的方法,无穷小$\beta$ -函数,加强了$N_f = 12$模型没有红外固定点到$g^2 = 7.2$的情况。我们展示了如何在$N_f = 10$的一个域壁研究中被低估的截止依赖性已被纠正,这现在与显示单调增加$\beta$ -函数的交错结果一致。一个一致的主题是,太小的体积会导致表面固定点在连续体极限处消失。我们还将无穷小$\beta$ -函数方法应用于$N_f = 10$模型,发现与有限步$\beta$ -函数一致的行为。正在进行的六极体模型的模拟和分析证实了我们之前的结果,从弱耦合到强耦合,自始至终都有一个非零$\beta$ -函数,与威尔逊费米子模拟的定量差异\cite{Hasenfratz:2015ssa}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Case studies of near-conformal beta-functions
We present updated results for the non-perturbative $\beta$-function of SU(3) gauge theories with $N_f = 12$ or 10 massless flavors in the fundamental rep or $N_f = 2$ in the sextet rep, measured with staggered fermions. New data at finer lattice spacing and our previously introduced method, the infinitesimal $\beta$-function, strengthen the case that the $N_f = 12$ model has no infrared fixed point up to $g^2 = 7.2$. We show how underestimated cutoff dependence in one domain wall study for $N_f = 10$ has been corrected, which is now consistent with staggered results showing a monotonically increasing $\beta$-function. A consistent theme is that too small volumes can lead to apparent fixed points which vanish towards the continuum limit. We also apply the infinitesimal $\beta$-function method to the $N_f = 10$ model, finding consistent behavior with the finite-step $\beta$-function. Ongoing simulations and analysis for the sextet model confirm our previous results from weak to strong coupling with a non-zero $\beta$-function throughout, in quantitative difference to Wilson fermion simulations~\cite{Hasenfratz:2015ssa}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信