用局部径向基函数法模拟斜方圆柱混合流动

Tong-sheng Wang, Zhu Huang, Zhongguo Sun, G. Xi
{"title":"用局部径向基函数法模拟斜方圆柱混合流动","authors":"Tong-sheng Wang, Zhu Huang, Zhongguo Sun, G. Xi","doi":"10.1115/ajkfluids2019-5196","DOIUrl":null,"url":null,"abstract":"\n Unsteady mixed convective heat transfer flow past an inclined square cylinder is numerically investigated using a local multi-quadric radial basis function (MQRBF) interpolation. The blockage parameter (ratio of square cylinder length d to height of the computational domain H) varies from 0.025 to 0.2. Air is considered as the working fluid and Prandtl number is fixed at 0.71. Richardson number generally affects the heat transfer efficiency ranging from 0 to 20. Inclined angle of square cylinder ranges from 0° to 45°. The inlet flow is assumed to be laminar and uniform. At the outlet of the computational domain, a convective boundary condition is compared with a traditional Neumann condition. A study of the shape parameter of MQRBF which is sensitive to the distribution of inhomogeneous supporting nodes is provided. The representative streamlines, vortex structures and isotherm patterns are presented and discussed. In addition, the overall lift and drag coefficients, average Nusselt number and Strouhal number for unsteady flow are analyzed for various Reynolds number and Richardson number.","PeriodicalId":346736,"journal":{"name":"Volume 2: Computational Fluid Dynamics","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Mixed Flow Past an Inclined Square Cylinder Using a Local Radial Basis Function Method\",\"authors\":\"Tong-sheng Wang, Zhu Huang, Zhongguo Sun, G. Xi\",\"doi\":\"10.1115/ajkfluids2019-5196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Unsteady mixed convective heat transfer flow past an inclined square cylinder is numerically investigated using a local multi-quadric radial basis function (MQRBF) interpolation. The blockage parameter (ratio of square cylinder length d to height of the computational domain H) varies from 0.025 to 0.2. Air is considered as the working fluid and Prandtl number is fixed at 0.71. Richardson number generally affects the heat transfer efficiency ranging from 0 to 20. Inclined angle of square cylinder ranges from 0° to 45°. The inlet flow is assumed to be laminar and uniform. At the outlet of the computational domain, a convective boundary condition is compared with a traditional Neumann condition. A study of the shape parameter of MQRBF which is sensitive to the distribution of inhomogeneous supporting nodes is provided. The representative streamlines, vortex structures and isotherm patterns are presented and discussed. In addition, the overall lift and drag coefficients, average Nusselt number and Strouhal number for unsteady flow are analyzed for various Reynolds number and Richardson number.\",\"PeriodicalId\":346736,\"journal\":{\"name\":\"Volume 2: Computational Fluid Dynamics\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Computational Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-5196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用局部多二次径向基函数(MQRBF)插值方法,对斜方柱体非定常混合对流换热流进行了数值模拟。堵塞参数(计算域H的方柱长度d与高度之比)在0.025 ~ 0.2之间变化。将空气作为工作流体,将普朗特数固定为0.71。理查德森数对换热效率的影响范围一般在0 ~ 20之间。方柱体倾角范围为0°~ 45°。假定进口气流是层流和均匀的。在计算域的出口,将对流边界条件与传统的诺伊曼条件进行了比较。研究了对非均匀支撑节点分布敏感的MQRBF形状参数。给出并讨论了具有代表性的流线、涡结构和等温线模式。此外,还分析了不同雷诺数和理查德森数下非定常流场的总升力和阻力系数、平均努塞尔数和斯特劳哈尔数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Simulation of Mixed Flow Past an Inclined Square Cylinder Using a Local Radial Basis Function Method
Unsteady mixed convective heat transfer flow past an inclined square cylinder is numerically investigated using a local multi-quadric radial basis function (MQRBF) interpolation. The blockage parameter (ratio of square cylinder length d to height of the computational domain H) varies from 0.025 to 0.2. Air is considered as the working fluid and Prandtl number is fixed at 0.71. Richardson number generally affects the heat transfer efficiency ranging from 0 to 20. Inclined angle of square cylinder ranges from 0° to 45°. The inlet flow is assumed to be laminar and uniform. At the outlet of the computational domain, a convective boundary condition is compared with a traditional Neumann condition. A study of the shape parameter of MQRBF which is sensitive to the distribution of inhomogeneous supporting nodes is provided. The representative streamlines, vortex structures and isotherm patterns are presented and discussed. In addition, the overall lift and drag coefficients, average Nusselt number and Strouhal number for unsteady flow are analyzed for various Reynolds number and Richardson number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信