外生影响下投资组合优化的遗传算法和MS求解器

Roshan Shaikh, A. Abbas
{"title":"外生影响下投资组合优化的遗传算法和MS求解器","authors":"Roshan Shaikh, A. Abbas","doi":"10.1109/ICCEE.2009.173","DOIUrl":null,"url":null,"abstract":"This study comprises of the Genetic Algorithm (GA) approach to optimize a constrained portfolio for maximum return with an acceptable risk for Karachi Stock Exchange (KSE) assets. The portfolio selection model used in this paper is based on the classical Markowitz mean-variance theory enhanced with exogenous influence of floor and ceiling. The results are compared with MS Excel Solver (Solver). It is found that the model works well under the influence of a high probability of local minima.","PeriodicalId":343870,"journal":{"name":"2009 Second International Conference on Computer and Electrical Engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Genetic Algorithm and MS Solver for Portfolio Optimization under Exogenous Influence\",\"authors\":\"Roshan Shaikh, A. Abbas\",\"doi\":\"10.1109/ICCEE.2009.173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study comprises of the Genetic Algorithm (GA) approach to optimize a constrained portfolio for maximum return with an acceptable risk for Karachi Stock Exchange (KSE) assets. The portfolio selection model used in this paper is based on the classical Markowitz mean-variance theory enhanced with exogenous influence of floor and ceiling. The results are compared with MS Excel Solver (Solver). It is found that the model works well under the influence of a high probability of local minima.\",\"PeriodicalId\":343870,\"journal\":{\"name\":\"2009 Second International Conference on Computer and Electrical Engineering\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Conference on Computer and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEE.2009.173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Computer and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEE.2009.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究包括遗传算法(GA)方法,以优化卡拉奇证券交易所(KSE)资产在可接受的风险下获得最大回报的约束投资组合。本文所采用的投资组合选择模型是基于经典的马科维茨均值方差理论,并加入了上限和下限的外生影响。结果与MS Excel求解器(Solver)进行了比较。结果表明,在局部极小值的高概率影响下,该模型能很好地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Algorithm and MS Solver for Portfolio Optimization under Exogenous Influence
This study comprises of the Genetic Algorithm (GA) approach to optimize a constrained portfolio for maximum return with an acceptable risk for Karachi Stock Exchange (KSE) assets. The portfolio selection model used in this paper is based on the classical Markowitz mean-variance theory enhanced with exogenous influence of floor and ceiling. The results are compared with MS Excel Solver (Solver). It is found that the model works well under the influence of a high probability of local minima.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信