近期量子计算系统的混合编程

A. McCaskey, E. Dumitrescu, D. Liakh, T. Humble
{"title":"近期量子计算系统的混合编程","authors":"A. McCaskey, E. Dumitrescu, D. Liakh, T. Humble","doi":"10.1109/ICRC.2018.8638598","DOIUrl":null,"url":null,"abstract":"Recent computations involving quantum processing units (QPUs)have demonstrated a series of challenges inherent to hybrid classical-quantum programming, compilation, execution, and verification and validation. Despite considerable progress, system-level noise, limited low-level instructions sets, remote access models, and an overall lack of portability and classical integration presents near-term programming challenges that must be overcome in order to enable reliable scientific quantum computing and support robust hardware benchmarking. In this work, we draw on our experience in programming QPUs to identify common concerns and challenges, and detail best practices for mitigating these challenges within the current hybrid classical-quantum computing paradigm. Following this discussion, we introduce the XACC quantum compilation and execution framework as a hardware and language independent solution that addresses many of these hybrid programming challenges. XACC supports extensible methodologies for managing a variety of programming, compilation, and execution concerns across the increasingly diverse set of QPUs. We use recent nuclear physics simulations to illustrate how the framework mitigates programming, compilation, and execution challenges and manages the complex workflow present in QPU-enhanced scientific applications. Finally, we codify the resulting hybrid scientific computing workflow in order to identify key areas requiring future improvement.","PeriodicalId":169413,"journal":{"name":"2018 IEEE International Conference on Rebooting Computing (ICRC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Hybrid Programming for Near-Term Quantum Computing Systems\",\"authors\":\"A. McCaskey, E. Dumitrescu, D. Liakh, T. Humble\",\"doi\":\"10.1109/ICRC.2018.8638598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent computations involving quantum processing units (QPUs)have demonstrated a series of challenges inherent to hybrid classical-quantum programming, compilation, execution, and verification and validation. Despite considerable progress, system-level noise, limited low-level instructions sets, remote access models, and an overall lack of portability and classical integration presents near-term programming challenges that must be overcome in order to enable reliable scientific quantum computing and support robust hardware benchmarking. In this work, we draw on our experience in programming QPUs to identify common concerns and challenges, and detail best practices for mitigating these challenges within the current hybrid classical-quantum computing paradigm. Following this discussion, we introduce the XACC quantum compilation and execution framework as a hardware and language independent solution that addresses many of these hybrid programming challenges. XACC supports extensible methodologies for managing a variety of programming, compilation, and execution concerns across the increasingly diverse set of QPUs. We use recent nuclear physics simulations to illustrate how the framework mitigates programming, compilation, and execution challenges and manages the complex workflow present in QPU-enhanced scientific applications. Finally, we codify the resulting hybrid scientific computing workflow in order to identify key areas requiring future improvement.\",\"PeriodicalId\":169413,\"journal\":{\"name\":\"2018 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2018.8638598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2018.8638598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

最近涉及量子处理单元(qpu)的计算已经展示了混合经典-量子编程,编译,执行以及验证和验证所固有的一系列挑战。尽管取得了相当大的进展,但系统级噪声、有限的低级指令集、远程访问模型以及总体上缺乏可移植性和经典集成,这些都是近期必须克服的编程挑战,以便实现可靠的科学量子计算并支持强大的硬件基准测试。在这项工作中,我们利用我们在编程qpu方面的经验来确定共同的关注点和挑战,并详细介绍了在当前混合经典-量子计算范式中减轻这些挑战的最佳实践。在此讨论之后,我们将介绍XACC量子编译和执行框架,它是一种独立于硬件和语言的解决方案,可以解决许多这些混合编程挑战。XACC支持可扩展的方法,用于跨日益多样化的qpu集管理各种编程、编译和执行关注点。我们使用最近的核物理模拟来说明该框架如何减轻编程、编译和执行挑战,并管理qpu增强科学应用中存在的复杂工作流程。最后,我们将生成的混合科学计算工作流程进行编码,以便确定需要未来改进的关键领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Programming for Near-Term Quantum Computing Systems
Recent computations involving quantum processing units (QPUs)have demonstrated a series of challenges inherent to hybrid classical-quantum programming, compilation, execution, and verification and validation. Despite considerable progress, system-level noise, limited low-level instructions sets, remote access models, and an overall lack of portability and classical integration presents near-term programming challenges that must be overcome in order to enable reliable scientific quantum computing and support robust hardware benchmarking. In this work, we draw on our experience in programming QPUs to identify common concerns and challenges, and detail best practices for mitigating these challenges within the current hybrid classical-quantum computing paradigm. Following this discussion, we introduce the XACC quantum compilation and execution framework as a hardware and language independent solution that addresses many of these hybrid programming challenges. XACC supports extensible methodologies for managing a variety of programming, compilation, and execution concerns across the increasingly diverse set of QPUs. We use recent nuclear physics simulations to illustrate how the framework mitigates programming, compilation, and execution challenges and manages the complex workflow present in QPU-enhanced scientific applications. Finally, we codify the resulting hybrid scientific computing workflow in order to identify key areas requiring future improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信