三相四线制自主风能转换系统中DFIGs并联运行

P. Goel, Bhim Singh, S. Murthy, N. Kishore
{"title":"三相四线制自主风能转换系统中DFIGs并联运行","authors":"P. Goel, Bhim Singh, S. Murthy, N. Kishore","doi":"10.1109/IAS.2009.5324940","DOIUrl":null,"url":null,"abstract":"This paper deals with a control algorithm for two parallel-operated doubly fed induction generators (DFIGs) driven by wind turbines in a three-phase four-wire autonomous system feeding local loads. The proposed autonomous wind energy conversion system (AWECS) is using back-to-back-connected pulsewidth-modulated insulated-gate-bipolar-transistor-based voltage source converters with a battery energy storage system at their dc link. The system utilizes separate rotor-side converters for each DFIG for maximum power tracking (MPT) through its rotor speed control. However, a common dc bus and a battery bank and stator-side converter are used for voltage and frequency control at the stator terminals of the DFIGs. A delta-star transformer is connected between the stator-side converter and the stator terminals of DFIGs for optimizing the voltage of dc bus, and the load-side neutral is connected to the neutral of the star side of the transformer. The proposed electromechanical system is modeled and simulated in MATLAB using Simulink and Sim Power Systems set toolboxes. The performance of the proposed AWECS is presented to demonstrate its capability of MPT, stator voltage and frequency control, harmonic elimination, load balancing, and load leveling.","PeriodicalId":178685,"journal":{"name":"2009 IEEE Industry Applications Society Annual Meeting","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Parallel Operation of DFIGs in Three Phase Four Wire Autonomous Wind Energy Conversion System\",\"authors\":\"P. Goel, Bhim Singh, S. Murthy, N. Kishore\",\"doi\":\"10.1109/IAS.2009.5324940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a control algorithm for two parallel-operated doubly fed induction generators (DFIGs) driven by wind turbines in a three-phase four-wire autonomous system feeding local loads. The proposed autonomous wind energy conversion system (AWECS) is using back-to-back-connected pulsewidth-modulated insulated-gate-bipolar-transistor-based voltage source converters with a battery energy storage system at their dc link. The system utilizes separate rotor-side converters for each DFIG for maximum power tracking (MPT) through its rotor speed control. However, a common dc bus and a battery bank and stator-side converter are used for voltage and frequency control at the stator terminals of the DFIGs. A delta-star transformer is connected between the stator-side converter and the stator terminals of DFIGs for optimizing the voltage of dc bus, and the load-side neutral is connected to the neutral of the star side of the transformer. The proposed electromechanical system is modeled and simulated in MATLAB using Simulink and Sim Power Systems set toolboxes. The performance of the proposed AWECS is presented to demonstrate its capability of MPT, stator voltage and frequency control, harmonic elimination, load balancing, and load leveling.\",\"PeriodicalId\":178685,\"journal\":{\"name\":\"2009 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2009.5324940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2009.5324940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

研究了风力发电机驱动的三相四线制并联双馈感应发电机(DFIGs)的控制算法。提出的自主风能转换系统(AWECS)采用背靠背连接脉宽调制绝缘栅双极晶体管电压源转换器,其直流链路上有电池储能系统。该系统利用单独的转子侧转换器为每个DFIG最大功率跟踪(MPT)通过其转子速度控制。然而,在DFIGs的定子端,通常使用直流母线、电池组和定子端转换器来控制电压和频率。在dfig的定子侧变流器与定子端之间连接一个三角星形变压器,用于优化直流母线电压,负载侧中性点与变压器星形侧的中性点相连。利用Simulink和Sim Power Systems工具箱在MATLAB中对所提出的机电系统进行了建模和仿真。提出的AWECS具有MPT、定子电压和频率控制、谐波消除、负载平衡和负载均衡等功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Operation of DFIGs in Three Phase Four Wire Autonomous Wind Energy Conversion System
This paper deals with a control algorithm for two parallel-operated doubly fed induction generators (DFIGs) driven by wind turbines in a three-phase four-wire autonomous system feeding local loads. The proposed autonomous wind energy conversion system (AWECS) is using back-to-back-connected pulsewidth-modulated insulated-gate-bipolar-transistor-based voltage source converters with a battery energy storage system at their dc link. The system utilizes separate rotor-side converters for each DFIG for maximum power tracking (MPT) through its rotor speed control. However, a common dc bus and a battery bank and stator-side converter are used for voltage and frequency control at the stator terminals of the DFIGs. A delta-star transformer is connected between the stator-side converter and the stator terminals of DFIGs for optimizing the voltage of dc bus, and the load-side neutral is connected to the neutral of the star side of the transformer. The proposed electromechanical system is modeled and simulated in MATLAB using Simulink and Sim Power Systems set toolboxes. The performance of the proposed AWECS is presented to demonstrate its capability of MPT, stator voltage and frequency control, harmonic elimination, load balancing, and load leveling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信