立方氧化锆的数学模型

Juhari Juhari
{"title":"立方氧化锆的数学模型","authors":"Juhari Juhari","doi":"10.18860/jrmm.v1i1.13703","DOIUrl":null,"url":null,"abstract":"The creative industries have become the government's attention for contributing to economic accretion. But due the lack of artistic creativity and appeal, the evolution of creative industries craft section is not optimal. So that it was needed a variations of relief items to increase the attractiveness. In general, industrial objects design are still limited to the space geometry objects or a Bezier curve of degree two. Therefore, Bezier curves of degree is selected and modified it into a quartic Bezier forms and then applied to the design of industrial objects (glassware). The purpose of this research is to determine the formula of quartic Bezier from of qubic Bezier modifications and to determine the rotary surface shape of quartic Bezier from cubic Bezier modifications. Then, from some form of revolving surface of modified cubic Bezier the glassware designs are generated. The results of this research are, first, the formula of quartic Bezier result of Bezier cubic modifications. Second, the form of revolving surface of modified cubic Bezier which is influenced by five control points  and parameter selection . For further Research it is expected to develop a modification of cubic Bezier into Bezier of degree-","PeriodicalId":270235,"journal":{"name":"Jurnal Riset Mahasiswa Matematika","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Model Matematika Kurva Kuartik Bezier Hasil Modifikasi Kubik Bezier\",\"authors\":\"Juhari Juhari\",\"doi\":\"10.18860/jrmm.v1i1.13703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The creative industries have become the government's attention for contributing to economic accretion. But due the lack of artistic creativity and appeal, the evolution of creative industries craft section is not optimal. So that it was needed a variations of relief items to increase the attractiveness. In general, industrial objects design are still limited to the space geometry objects or a Bezier curve of degree two. Therefore, Bezier curves of degree is selected and modified it into a quartic Bezier forms and then applied to the design of industrial objects (glassware). The purpose of this research is to determine the formula of quartic Bezier from of qubic Bezier modifications and to determine the rotary surface shape of quartic Bezier from cubic Bezier modifications. Then, from some form of revolving surface of modified cubic Bezier the glassware designs are generated. The results of this research are, first, the formula of quartic Bezier result of Bezier cubic modifications. Second, the form of revolving surface of modified cubic Bezier which is influenced by five control points  and parameter selection . For further Research it is expected to develop a modification of cubic Bezier into Bezier of degree-\",\"PeriodicalId\":270235,\"journal\":{\"name\":\"Jurnal Riset Mahasiswa Matematika\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Riset Mahasiswa Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18860/jrmm.v1i1.13703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Riset Mahasiswa Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/jrmm.v1i1.13703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

创意产业已成为政府关注的重点,为经济增长做出贡献。但由于缺乏艺术创造力和感染力,创意产业工艺板块的发展并不理想。所以它需要各种各样的救济物品来增加吸引力。一般来说,工业对象的设计仍然局限于空间几何对象或二阶贝塞尔曲线。因此,选择Bezier度曲线并将其修改为四次Bezier形式,然后应用于工业物品(玻璃器皿)的设计。本研究的目的是由三次贝塞尔修正确定四次贝塞尔的公式,并由三次贝塞尔修正确定四次贝塞尔的旋转曲面形状。然后,从某种形式的修正立方贝塞尔旋转曲面生成玻璃器皿的设计。本研究的结果是:首先,得到了Bezier三次修正的四次Bezier结果公式。其次,修正三次贝塞尔旋转曲面的形式受五个控制点和参数选择的影响。为了进一步的研究,期望将三次贝塞尔变换成-次贝塞尔
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Matematika Kurva Kuartik Bezier Hasil Modifikasi Kubik Bezier
The creative industries have become the government's attention for contributing to economic accretion. But due the lack of artistic creativity and appeal, the evolution of creative industries craft section is not optimal. So that it was needed a variations of relief items to increase the attractiveness. In general, industrial objects design are still limited to the space geometry objects or a Bezier curve of degree two. Therefore, Bezier curves of degree is selected and modified it into a quartic Bezier forms and then applied to the design of industrial objects (glassware). The purpose of this research is to determine the formula of quartic Bezier from of qubic Bezier modifications and to determine the rotary surface shape of quartic Bezier from cubic Bezier modifications. Then, from some form of revolving surface of modified cubic Bezier the glassware designs are generated. The results of this research are, first, the formula of quartic Bezier result of Bezier cubic modifications. Second, the form of revolving surface of modified cubic Bezier which is influenced by five control points  and parameter selection . For further Research it is expected to develop a modification of cubic Bezier into Bezier of degree-
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信