{"title":"基于DNN-HMM的大词汇蒙古语离线手写识别","authors":"Fan Daoerji, Gao Guang-lai","doi":"10.1109/ICFHR.2016.0026","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a large vocabulary Mongolian offline handwriting recognition system, using hidden Markov models (HMMs)-deep neural networks (DNN) hybrid architectures which shows superior performance on auto speech recognize (ASR) tasks. We select 50 sub-characters from all shape of Mongolian letters as the smallest modeling unit. First, a set of intensity features are extracted from each of the segmented word, which is based on a sliding window moving across each word image. Then, Multiple contextdependent Gaussian mixture model (GMM)-HMMs are trained by the features. At last a DNN which have 4 hidden layers are trained as a frame classifier, where the class labels are state labels assigned to each input frame through forced alignment using the context-dependent model. In order to validate the proposed model, extensive experiments were carried out using the MHW database which contains 100,000 handwritten words in training set, 5,000 in test set I and 14,085 in Test set II. The DNN-HMM w hich is trained on raw image pixels yields best performance on Test set I with an accuracy of 97.61% and on Test set II with an accuracy of 94.14%.","PeriodicalId":194844,"journal":{"name":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","volume":"384 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"DNN-HMM for Large Vocabulary Mongolian Offline Handwriting Recognition\",\"authors\":\"Fan Daoerji, Gao Guang-lai\",\"doi\":\"10.1109/ICFHR.2016.0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a large vocabulary Mongolian offline handwriting recognition system, using hidden Markov models (HMMs)-deep neural networks (DNN) hybrid architectures which shows superior performance on auto speech recognize (ASR) tasks. We select 50 sub-characters from all shape of Mongolian letters as the smallest modeling unit. First, a set of intensity features are extracted from each of the segmented word, which is based on a sliding window moving across each word image. Then, Multiple contextdependent Gaussian mixture model (GMM)-HMMs are trained by the features. At last a DNN which have 4 hidden layers are trained as a frame classifier, where the class labels are state labels assigned to each input frame through forced alignment using the context-dependent model. In order to validate the proposed model, extensive experiments were carried out using the MHW database which contains 100,000 handwritten words in training set, 5,000 in test set I and 14,085 in Test set II. The DNN-HMM w hich is trained on raw image pixels yields best performance on Test set I with an accuracy of 97.61% and on Test set II with an accuracy of 94.14%.\",\"PeriodicalId\":194844,\"journal\":{\"name\":\"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)\",\"volume\":\"384 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2016.0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2016.0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DNN-HMM for Large Vocabulary Mongolian Offline Handwriting Recognition
In this paper, we propose a large vocabulary Mongolian offline handwriting recognition system, using hidden Markov models (HMMs)-deep neural networks (DNN) hybrid architectures which shows superior performance on auto speech recognize (ASR) tasks. We select 50 sub-characters from all shape of Mongolian letters as the smallest modeling unit. First, a set of intensity features are extracted from each of the segmented word, which is based on a sliding window moving across each word image. Then, Multiple contextdependent Gaussian mixture model (GMM)-HMMs are trained by the features. At last a DNN which have 4 hidden layers are trained as a frame classifier, where the class labels are state labels assigned to each input frame through forced alignment using the context-dependent model. In order to validate the proposed model, extensive experiments were carried out using the MHW database which contains 100,000 handwritten words in training set, 5,000 in test set I and 14,085 in Test set II. The DNN-HMM w hich is trained on raw image pixels yields best performance on Test set I with an accuracy of 97.61% and on Test set II with an accuracy of 94.14%.