噪声条件下交通大数据智能目标跟踪技术

Tang Mingze, Xinyao Yu
{"title":"噪声条件下交通大数据智能目标跟踪技术","authors":"Tang Mingze, Xinyao Yu","doi":"10.1109/ICDSCA56264.2022.9988019","DOIUrl":null,"url":null,"abstract":"Intelligent transportation systems make extensive use of image processing techniques such as object detection and tracking. Real-world traffic conditions require specialized processing of image noise, typically caused by weather conditions or occlusions. This paper proposes a contextual community attention graph neural network structure, which uses the attention mechanism representation of different community nodes to associate important recognition features. This structure can effectively track objects in noisy videos. Algorithm comparison experiments on the dataset show that the method performs better in rainy and night conditions.","PeriodicalId":416983,"journal":{"name":"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)","volume":"384 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic Big Data Intelligent Object Tracking Technology under Noise Conditions\",\"authors\":\"Tang Mingze, Xinyao Yu\",\"doi\":\"10.1109/ICDSCA56264.2022.9988019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent transportation systems make extensive use of image processing techniques such as object detection and tracking. Real-world traffic conditions require specialized processing of image noise, typically caused by weather conditions or occlusions. This paper proposes a contextual community attention graph neural network structure, which uses the attention mechanism representation of different community nodes to associate important recognition features. This structure can effectively track objects in noisy videos. Algorithm comparison experiments on the dataset show that the method performs better in rainy and night conditions.\",\"PeriodicalId\":416983,\"journal\":{\"name\":\"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)\",\"volume\":\"384 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSCA56264.2022.9988019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSCA56264.2022.9988019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智能交通系统广泛使用图像处理技术,如物体检测和跟踪。现实世界的交通状况需要对图像噪声进行专门处理,这些噪声通常是由天气状况或遮挡引起的。本文提出了一种上下文社区注意图神经网络结构,利用不同社区节点的注意机制表示来关联重要的识别特征。这种结构可以有效地跟踪噪声视频中的目标。在数据集上进行的算法对比实验表明,该方法在雨夜条件下具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic Big Data Intelligent Object Tracking Technology under Noise Conditions
Intelligent transportation systems make extensive use of image processing techniques such as object detection and tracking. Real-world traffic conditions require specialized processing of image noise, typically caused by weather conditions or occlusions. This paper proposes a contextual community attention graph neural network structure, which uses the attention mechanism representation of different community nodes to associate important recognition features. This structure can effectively track objects in noisy videos. Algorithm comparison experiments on the dataset show that the method performs better in rainy and night conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信