基于卷积神经网络的面部表情识别

Mj Alben Richards, E. Kaaviya Varshini, N. Diviya, P. Prakash, Kasthuri P
{"title":"基于卷积神经网络的面部表情识别","authors":"Mj Alben Richards, E. Kaaviya Varshini, N. Diviya, P. Prakash, Kasthuri P","doi":"10.1109/ICBSII58188.2023.10181041","DOIUrl":null,"url":null,"abstract":"Facial expression is a way of non-verbal communication by using eyes, lips, nose and facial muscles. Smiling and rolling eyes are some examples. Facial expression recognition is the process of extracting facial features from a person. Facial expressions include anger, happy, disgust, sad, neutral, fear and surprise. By the use of machine learning, an expression recognition model is built using Convolutional Neural Network. The input data is fed to the system in order to give the expected results. The model is trained using Facial Expression Recognition (FER) dataset. The Convolutional Neural Network (CNN) gives good and accurate results. The Haar cascade classifier classifies the face and non-face regions in the input image which helps the convolutional network to classify the images. Good classification of images can be desirable by the use of classifiers. These classifiers can be implemented by using the OpenCV library.","PeriodicalId":388866,"journal":{"name":"2023 International Conference on Bio Signals, Images, and Instrumentation (ICBSII)","volume":"383 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facial Expression Recognition using Convolutional Neural Network\",\"authors\":\"Mj Alben Richards, E. Kaaviya Varshini, N. Diviya, P. Prakash, Kasthuri P\",\"doi\":\"10.1109/ICBSII58188.2023.10181041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression is a way of non-verbal communication by using eyes, lips, nose and facial muscles. Smiling and rolling eyes are some examples. Facial expression recognition is the process of extracting facial features from a person. Facial expressions include anger, happy, disgust, sad, neutral, fear and surprise. By the use of machine learning, an expression recognition model is built using Convolutional Neural Network. The input data is fed to the system in order to give the expected results. The model is trained using Facial Expression Recognition (FER) dataset. The Convolutional Neural Network (CNN) gives good and accurate results. The Haar cascade classifier classifies the face and non-face regions in the input image which helps the convolutional network to classify the images. Good classification of images can be desirable by the use of classifiers. These classifiers can be implemented by using the OpenCV library.\",\"PeriodicalId\":388866,\"journal\":{\"name\":\"2023 International Conference on Bio Signals, Images, and Instrumentation (ICBSII)\",\"volume\":\"383 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Bio Signals, Images, and Instrumentation (ICBSII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBSII58188.2023.10181041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Bio Signals, Images, and Instrumentation (ICBSII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBSII58188.2023.10181041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

面部表情是一种使用眼睛、嘴唇、鼻子和面部肌肉进行非语言交流的方式。微笑和翻白眼就是一些例子。面部表情识别是提取人的面部特征的过程。面部表情包括生气、高兴、厌恶、悲伤、中性、恐惧和惊讶。利用机器学习技术,利用卷积神经网络建立表情识别模型。输入的数据被馈送到系统中,以便给出预期的结果。该模型使用面部表情识别(FER)数据集进行训练。卷积神经网络(CNN)给出了良好而准确的结果。Haar级联分类器对输入图像中的人脸区域和非人脸区域进行分类,从而帮助卷积网络对图像进行分类。使用分类器可以实现良好的图像分类。这些分类器可以通过使用OpenCV库来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial Expression Recognition using Convolutional Neural Network
Facial expression is a way of non-verbal communication by using eyes, lips, nose and facial muscles. Smiling and rolling eyes are some examples. Facial expression recognition is the process of extracting facial features from a person. Facial expressions include anger, happy, disgust, sad, neutral, fear and surprise. By the use of machine learning, an expression recognition model is built using Convolutional Neural Network. The input data is fed to the system in order to give the expected results. The model is trained using Facial Expression Recognition (FER) dataset. The Convolutional Neural Network (CNN) gives good and accurate results. The Haar cascade classifier classifies the face and non-face regions in the input image which helps the convolutional network to classify the images. Good classification of images can be desirable by the use of classifiers. These classifiers can be implemented by using the OpenCV library.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信