打地鼠模型——迈向辐射照射生物效应的统一描述

Y. Manabe, T. Wada, Y. Tsunoyama, Hiroo Nakajima, I. Nakamura, M. Bandō
{"title":"打地鼠模型——迈向辐射照射生物效应的统一描述","authors":"Y. Manabe, T. Wada, Y. Tsunoyama, Hiroo Nakajima, I. Nakamura, M. Bandō","doi":"10.7566/JPSJ.84.044002","DOIUrl":null,"url":null,"abstract":"We present a novel model to estimate biological effects caused by artificial radiation exposure, Whack-a-mole (WAM) model. It is important to take account of the recovery effects during the time course of the cellular reactions. The inclusion of the dose-rate dependence is essential in the risk estimation of low dose radiation, while nearly all the existing theoretical models relies on the total dose dependence only. By analyzing the experimental data of the relation between the radiation dose and the induced mutation frequency of 5 organisms, mouse, drosophila, chrysanthemum, maize and tradescantia, we found that all the data can be reproduced by WAM model. Most remarkably, a scaling function, which is derived from WAM model, consistently accounts for the observed mutation frequencies of 5 organisms. This is the first rationale to account for the dose rate dependence as well as to give a unified understanding of a general feature of organisms.","PeriodicalId":360136,"journal":{"name":"arXiv: Biological Physics","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Whack-A-Mole Model -Towards unified description of biological effect caused by radiation-exposure\",\"authors\":\"Y. Manabe, T. Wada, Y. Tsunoyama, Hiroo Nakajima, I. Nakamura, M. Bandō\",\"doi\":\"10.7566/JPSJ.84.044002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel model to estimate biological effects caused by artificial radiation exposure, Whack-a-mole (WAM) model. It is important to take account of the recovery effects during the time course of the cellular reactions. The inclusion of the dose-rate dependence is essential in the risk estimation of low dose radiation, while nearly all the existing theoretical models relies on the total dose dependence only. By analyzing the experimental data of the relation between the radiation dose and the induced mutation frequency of 5 organisms, mouse, drosophila, chrysanthemum, maize and tradescantia, we found that all the data can be reproduced by WAM model. Most remarkably, a scaling function, which is derived from WAM model, consistently accounts for the observed mutation frequencies of 5 organisms. This is the first rationale to account for the dose rate dependence as well as to give a unified understanding of a general feature of organisms.\",\"PeriodicalId\":360136,\"journal\":{\"name\":\"arXiv: Biological Physics\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Biological Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7566/JPSJ.84.044002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7566/JPSJ.84.044002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了一种新的模型来估计人工辐射照射引起的生物效应,即打鼹鼠模型。在细胞反应的时间过程中,考虑恢复效应是很重要的。在低剂量辐射的风险估计中,纳入剂量率依赖关系是必不可少的,而几乎所有现有的理论模型都只依赖于总剂量依赖关系。通过分析辐射剂量与小鼠、果蝇、菊花、玉米和芒草5种生物诱变频率关系的实验数据,发现所有数据都可以用WAM模型再现。最值得注意的是,由WAM模型导出的缩放函数一致地解释了观察到的5种生物的突变频率。这是解释剂量率依赖性的第一个基本原理,并对生物体的一般特征给出了统一的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Whack-A-Mole Model -Towards unified description of biological effect caused by radiation-exposure
We present a novel model to estimate biological effects caused by artificial radiation exposure, Whack-a-mole (WAM) model. It is important to take account of the recovery effects during the time course of the cellular reactions. The inclusion of the dose-rate dependence is essential in the risk estimation of low dose radiation, while nearly all the existing theoretical models relies on the total dose dependence only. By analyzing the experimental data of the relation between the radiation dose and the induced mutation frequency of 5 organisms, mouse, drosophila, chrysanthemum, maize and tradescantia, we found that all the data can be reproduced by WAM model. Most remarkably, a scaling function, which is derived from WAM model, consistently accounts for the observed mutation frequencies of 5 organisms. This is the first rationale to account for the dose rate dependence as well as to give a unified understanding of a general feature of organisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信