H. Alan Mantooth, Yusi Liu, C. Farnell, Fengli Zhang, Qinghua Li, J. Di
{"title":"保护直流和混合微电网","authors":"H. Alan Mantooth, Yusi Liu, C. Farnell, Fengli Zhang, Qinghua Li, J. Di","doi":"10.1109/ICDCM.2015.7152055","DOIUrl":null,"url":null,"abstract":"Many security technologies for microgrids have been proposed in the literature, which must be rigorously tested in a realistic power platform before being transitioned to the energy sector. To address this need, a 13.8-kV microgrid security test bed is introduced in this paper towards the objective of securing dc and hybrid microgrids. Different from existing test beds that are based on simulated power flows, our test bed is built on a real power facility. The design of the test bed, including both the physical system and the cyber system, is described. Power electronics technology plays a major role in this test bed as it does in the microgrid infrastructure, and is an integral part of the testing instrumentation and methods. Potential security problems, from both software and hardware attacks, as well as security solutions, are considered and able to be emulated and evaluated using the test bed.","PeriodicalId":110320,"journal":{"name":"2015 IEEE First International Conference on DC Microgrids (ICDCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Securing DC and hybrid microgrids\",\"authors\":\"H. Alan Mantooth, Yusi Liu, C. Farnell, Fengli Zhang, Qinghua Li, J. Di\",\"doi\":\"10.1109/ICDCM.2015.7152055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many security technologies for microgrids have been proposed in the literature, which must be rigorously tested in a realistic power platform before being transitioned to the energy sector. To address this need, a 13.8-kV microgrid security test bed is introduced in this paper towards the objective of securing dc and hybrid microgrids. Different from existing test beds that are based on simulated power flows, our test bed is built on a real power facility. The design of the test bed, including both the physical system and the cyber system, is described. Power electronics technology plays a major role in this test bed as it does in the microgrid infrastructure, and is an integral part of the testing instrumentation and methods. Potential security problems, from both software and hardware attacks, as well as security solutions, are considered and able to be emulated and evaluated using the test bed.\",\"PeriodicalId\":110320,\"journal\":{\"name\":\"2015 IEEE First International Conference on DC Microgrids (ICDCM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE First International Conference on DC Microgrids (ICDCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCM.2015.7152055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE First International Conference on DC Microgrids (ICDCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCM.2015.7152055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Many security technologies for microgrids have been proposed in the literature, which must be rigorously tested in a realistic power platform before being transitioned to the energy sector. To address this need, a 13.8-kV microgrid security test bed is introduced in this paper towards the objective of securing dc and hybrid microgrids. Different from existing test beds that are based on simulated power flows, our test bed is built on a real power facility. The design of the test bed, including both the physical system and the cyber system, is described. Power electronics technology plays a major role in this test bed as it does in the microgrid infrastructure, and is an integral part of the testing instrumentation and methods. Potential security problems, from both software and hardware attacks, as well as security solutions, are considered and able to be emulated and evaluated using the test bed.