M. Zeppelzauer, Miroslav Despotovic, Muntaha Sakeena, David Koch, M. Döller
{"title":"从照片中自动预测建筑物的年龄","authors":"M. Zeppelzauer, Miroslav Despotovic, Muntaha Sakeena, David Koch, M. Döller","doi":"10.1145/3206025.3206060","DOIUrl":null,"url":null,"abstract":"We present a first method for the automated age estimation of buildings from unconstrained photographs. To this end, we propose a two-stage approach that firstly learns characteristic visual patterns for different building epochs at patch-level and then globally aggregates patch-level age estimates over the building. We compile evaluation datasets from different sources and perform an detailed evaluation of our approach, its sensitivity to parameters, and the capabilities of the employed deep networks to learn characteristic visual age-related patterns. Results show that our approach is able to estimate building age at a surprisingly high level that even outperforms human evaluators and thereby sets a new performance baseline. This work represents a first step towards the automated assessment of building parameters for automated price prediction.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Automatic Prediction of Building Age from Photographs\",\"authors\":\"M. Zeppelzauer, Miroslav Despotovic, Muntaha Sakeena, David Koch, M. Döller\",\"doi\":\"10.1145/3206025.3206060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a first method for the automated age estimation of buildings from unconstrained photographs. To this end, we propose a two-stage approach that firstly learns characteristic visual patterns for different building epochs at patch-level and then globally aggregates patch-level age estimates over the building. We compile evaluation datasets from different sources and perform an detailed evaluation of our approach, its sensitivity to parameters, and the capabilities of the employed deep networks to learn characteristic visual age-related patterns. Results show that our approach is able to estimate building age at a surprisingly high level that even outperforms human evaluators and thereby sets a new performance baseline. This work represents a first step towards the automated assessment of building parameters for automated price prediction.\",\"PeriodicalId\":224132,\"journal\":{\"name\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3206025.3206060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Prediction of Building Age from Photographs
We present a first method for the automated age estimation of buildings from unconstrained photographs. To this end, we propose a two-stage approach that firstly learns characteristic visual patterns for different building epochs at patch-level and then globally aggregates patch-level age estimates over the building. We compile evaluation datasets from different sources and perform an detailed evaluation of our approach, its sensitivity to parameters, and the capabilities of the employed deep networks to learn characteristic visual age-related patterns. Results show that our approach is able to estimate building age at a surprisingly high level that even outperforms human evaluators and thereby sets a new performance baseline. This work represents a first step towards the automated assessment of building parameters for automated price prediction.