从照片中自动预测建筑物的年龄

M. Zeppelzauer, Miroslav Despotovic, Muntaha Sakeena, David Koch, M. Döller
{"title":"从照片中自动预测建筑物的年龄","authors":"M. Zeppelzauer, Miroslav Despotovic, Muntaha Sakeena, David Koch, M. Döller","doi":"10.1145/3206025.3206060","DOIUrl":null,"url":null,"abstract":"We present a first method for the automated age estimation of buildings from unconstrained photographs. To this end, we propose a two-stage approach that firstly learns characteristic visual patterns for different building epochs at patch-level and then globally aggregates patch-level age estimates over the building. We compile evaluation datasets from different sources and perform an detailed evaluation of our approach, its sensitivity to parameters, and the capabilities of the employed deep networks to learn characteristic visual age-related patterns. Results show that our approach is able to estimate building age at a surprisingly high level that even outperforms human evaluators and thereby sets a new performance baseline. This work represents a first step towards the automated assessment of building parameters for automated price prediction.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Automatic Prediction of Building Age from Photographs\",\"authors\":\"M. Zeppelzauer, Miroslav Despotovic, Muntaha Sakeena, David Koch, M. Döller\",\"doi\":\"10.1145/3206025.3206060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a first method for the automated age estimation of buildings from unconstrained photographs. To this end, we propose a two-stage approach that firstly learns characteristic visual patterns for different building epochs at patch-level and then globally aggregates patch-level age estimates over the building. We compile evaluation datasets from different sources and perform an detailed evaluation of our approach, its sensitivity to parameters, and the capabilities of the employed deep networks to learn characteristic visual age-related patterns. Results show that our approach is able to estimate building age at a surprisingly high level that even outperforms human evaluators and thereby sets a new performance baseline. This work represents a first step towards the automated assessment of building parameters for automated price prediction.\",\"PeriodicalId\":224132,\"journal\":{\"name\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3206025.3206060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

我们提出了从无约束照片中自动估计建筑物年龄的第一种方法。为此,我们提出了一种两阶段的方法,首先在斑块级别学习不同建筑时代的特征视觉模式,然后在全局上汇总建筑物的斑块级别年龄估计。我们编译了来自不同来源的评估数据集,并对我们的方法、其对参数的敏感性以及所使用的深度网络学习与年龄相关的特征视觉模式的能力进行了详细的评估。结果表明,我们的方法能够以惊人的高水平估计建筑物的年龄,甚至优于人类评估者,从而设置了一个新的性能基线。这项工作代表了自动评估建筑参数以实现自动价格预测的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Prediction of Building Age from Photographs
We present a first method for the automated age estimation of buildings from unconstrained photographs. To this end, we propose a two-stage approach that firstly learns characteristic visual patterns for different building epochs at patch-level and then globally aggregates patch-level age estimates over the building. We compile evaluation datasets from different sources and perform an detailed evaluation of our approach, its sensitivity to parameters, and the capabilities of the employed deep networks to learn characteristic visual age-related patterns. Results show that our approach is able to estimate building age at a surprisingly high level that even outperforms human evaluators and thereby sets a new performance baseline. This work represents a first step towards the automated assessment of building parameters for automated price prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信