{"title":"偏振SAR成像系统偏振质量评价与目标分解","authors":"Yanting Wang, T. Ainsworth, Jong-Sen Lee","doi":"10.1109/IGARSS.2010.5652141","DOIUrl":null,"url":null,"abstract":"The quality of polarimetric synthetic aperture radar (PolSAR) imagery and its polarimetric decompositions depends on the accuracy of polarimetric observations of the SAR system and its calibration. Polarization distortions on the polarimetric measurement can be incurred due to nonideal system polarization quality and propagation factors, such as channel imbalance, cross-talk, and Faraday rotation at lower frequencies. All these distortions have varying impacts on different target types as well as different decomposition methods. In this paper, we assess the polarization quality of the PolSAR system in the context of polarimetric imagery analysis and quantify the various effects of polarization distortions on polarization target decompositions. A generic metric is defined to measure the polarization purity of the system. Considering the fact that target decomposition plays an important role in imagery analysis, we apply several widely used decomposition methods to showcase the polarimetric system requirement based on the defined metric.","PeriodicalId":406785,"journal":{"name":"2010 IEEE International Geoscience and Remote Sensing Symposium","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of system polarization quality for polarimetric SAR imagery and target decomposition\",\"authors\":\"Yanting Wang, T. Ainsworth, Jong-Sen Lee\",\"doi\":\"10.1109/IGARSS.2010.5652141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of polarimetric synthetic aperture radar (PolSAR) imagery and its polarimetric decompositions depends on the accuracy of polarimetric observations of the SAR system and its calibration. Polarization distortions on the polarimetric measurement can be incurred due to nonideal system polarization quality and propagation factors, such as channel imbalance, cross-talk, and Faraday rotation at lower frequencies. All these distortions have varying impacts on different target types as well as different decomposition methods. In this paper, we assess the polarization quality of the PolSAR system in the context of polarimetric imagery analysis and quantify the various effects of polarization distortions on polarization target decompositions. A generic metric is defined to measure the polarization purity of the system. Considering the fact that target decomposition plays an important role in imagery analysis, we apply several widely used decomposition methods to showcase the polarimetric system requirement based on the defined metric.\",\"PeriodicalId\":406785,\"journal\":{\"name\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2010.5652141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2010.5652141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of system polarization quality for polarimetric SAR imagery and target decomposition
The quality of polarimetric synthetic aperture radar (PolSAR) imagery and its polarimetric decompositions depends on the accuracy of polarimetric observations of the SAR system and its calibration. Polarization distortions on the polarimetric measurement can be incurred due to nonideal system polarization quality and propagation factors, such as channel imbalance, cross-talk, and Faraday rotation at lower frequencies. All these distortions have varying impacts on different target types as well as different decomposition methods. In this paper, we assess the polarization quality of the PolSAR system in the context of polarimetric imagery analysis and quantify the various effects of polarization distortions on polarization target decompositions. A generic metric is defined to measure the polarization purity of the system. Considering the fact that target decomposition plays an important role in imagery analysis, we apply several widely used decomposition methods to showcase the polarimetric system requirement based on the defined metric.