电视新闻故事检测与分类的概率框架

F. Colace, P. Foggia, G. Percannella
{"title":"电视新闻故事检测与分类的概率框架","authors":"F. Colace, P. Foggia, G. Percannella","doi":"10.1109/ICME.2005.1521680","DOIUrl":null,"url":null,"abstract":"In this paper we face the problem of partitioning the news videos into stories, and of their classification according to a predefined set of categories. In particular, we propose to employ a multi-level probabilistic framework based on the hidden Markov models and the Bayesian networks paradigms for the segmentation and the classification phases, respectively. The whole analysis is carried out exploiting information extracted from the video and the audio tracks using techniques of superimposed text recognition, speaker identification, speech transcription, anchor detection. The system was tested on a database of Italian news videos and the results are very promising","PeriodicalId":244360,"journal":{"name":"2005 IEEE International Conference on Multimedia and Expo","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A Probabilistic Framework for TV-News Stories Detection and Classification\",\"authors\":\"F. Colace, P. Foggia, G. Percannella\",\"doi\":\"10.1109/ICME.2005.1521680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we face the problem of partitioning the news videos into stories, and of their classification according to a predefined set of categories. In particular, we propose to employ a multi-level probabilistic framework based on the hidden Markov models and the Bayesian networks paradigms for the segmentation and the classification phases, respectively. The whole analysis is carried out exploiting information extracted from the video and the audio tracks using techniques of superimposed text recognition, speaker identification, speech transcription, anchor detection. The system was tested on a database of Italian news videos and the results are very promising\",\"PeriodicalId\":244360,\"journal\":{\"name\":\"2005 IEEE International Conference on Multimedia and Expo\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2005.1521680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2005.1521680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在本文中,我们面临的问题是将新闻视频划分为故事,并根据预定义的类别集对其进行分类。特别地,我们建议在分割和分类阶段分别采用基于隐马尔可夫模型和贝叶斯网络范式的多级概率框架。整个分析是利用叠加文本识别、说话人识别、语音转录、锚点检测等技术从视频和音轨中提取信息进行的。该系统在意大利新闻视频数据库上进行了测试,结果非常有希望
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Probabilistic Framework for TV-News Stories Detection and Classification
In this paper we face the problem of partitioning the news videos into stories, and of their classification according to a predefined set of categories. In particular, we propose to employ a multi-level probabilistic framework based on the hidden Markov models and the Bayesian networks paradigms for the segmentation and the classification phases, respectively. The whole analysis is carried out exploiting information extracted from the video and the audio tracks using techniques of superimposed text recognition, speaker identification, speech transcription, anchor detection. The system was tested on a database of Italian news videos and the results are very promising
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信