基于加权最小二乘的频率估计算法

R. Punchalard
{"title":"基于加权最小二乘的频率估计算法","authors":"R. Punchalard","doi":"10.1109/IEECON.2017.8075865","DOIUrl":null,"url":null,"abstract":"The LMS-based indirect frequency estimation algorithm (IFE) is reformulated using weighted least-square error criterion. Theoretical analyses for steady state bias and mean square error (MSE) are addressed. It has been shown that the proposed algorithm outperforms the conventional LMS-based algorithms in terms of convergence speed at the same value of MSE.","PeriodicalId":196081,"journal":{"name":"2017 International Electrical Engineering Congress (iEECON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weighted least square based frequency estimation algorithm\",\"authors\":\"R. Punchalard\",\"doi\":\"10.1109/IEECON.2017.8075865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The LMS-based indirect frequency estimation algorithm (IFE) is reformulated using weighted least-square error criterion. Theoretical analyses for steady state bias and mean square error (MSE) are addressed. It has been shown that the proposed algorithm outperforms the conventional LMS-based algorithms in terms of convergence speed at the same value of MSE.\",\"PeriodicalId\":196081,\"journal\":{\"name\":\"2017 International Electrical Engineering Congress (iEECON)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Electrical Engineering Congress (iEECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEECON.2017.8075865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electrical Engineering Congress (iEECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEECON.2017.8075865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用加权最小二乘误差准则对基于lms的间接频率估计算法进行了重新表述。对稳态偏差和均方误差(MSE)进行了理论分析。结果表明,在相同的MSE值下,该算法的收敛速度优于传统的基于lms的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted least square based frequency estimation algorithm
The LMS-based indirect frequency estimation algorithm (IFE) is reformulated using weighted least-square error criterion. Theoretical analyses for steady state bias and mean square error (MSE) are addressed. It has been shown that the proposed algorithm outperforms the conventional LMS-based algorithms in terms of convergence speed at the same value of MSE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信