多电子系统和泡利原理

J. Autschbach
{"title":"多电子系统和泡利原理","authors":"J. Autschbach","doi":"10.1093/OSO/9780190920807.003.0007","DOIUrl":null,"url":null,"abstract":"It is shown how the quantum Hamiltonian for a general molecule is set up, using the ‘quantum recipe’ of chapter 3. In the most restrictive Born Oppenheimer approximation, the nuclei are held fixed and the Schrodinger equation (SE) is set up for the electrons only. The wavefunction depends on the positions and spin projections of all electrons. The electron spin projection is introduced heuristically as another two-valued electron degree of freedom. The electronic SE cannot be solved exactly, and (spin-) orbitals are introduced to construct an approximate wavefunction. The Pauli principle demands that a many-electron wavefunction is antisymmetric upon the exchange of electron labels, which leads to the construction of the approximate orbital-model wavefunction as a Slater determinant rather than a simple Hartree product. The orbital model wavefunction does not describe the Coulomb electron correlation, but it incorporates the (Fermi) correlation leading to the Pauli exclusion.","PeriodicalId":207760,"journal":{"name":"Quantum Theory for Chemical Applications","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Many-electron Systems and the Pauli Principle\",\"authors\":\"J. Autschbach\",\"doi\":\"10.1093/OSO/9780190920807.003.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown how the quantum Hamiltonian for a general molecule is set up, using the ‘quantum recipe’ of chapter 3. In the most restrictive Born Oppenheimer approximation, the nuclei are held fixed and the Schrodinger equation (SE) is set up for the electrons only. The wavefunction depends on the positions and spin projections of all electrons. The electron spin projection is introduced heuristically as another two-valued electron degree of freedom. The electronic SE cannot be solved exactly, and (spin-) orbitals are introduced to construct an approximate wavefunction. The Pauli principle demands that a many-electron wavefunction is antisymmetric upon the exchange of electron labels, which leads to the construction of the approximate orbital-model wavefunction as a Slater determinant rather than a simple Hartree product. The orbital model wavefunction does not describe the Coulomb electron correlation, but it incorporates the (Fermi) correlation leading to the Pauli exclusion.\",\"PeriodicalId\":207760,\"journal\":{\"name\":\"Quantum Theory for Chemical Applications\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Theory for Chemical Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/OSO/9780190920807.003.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Theory for Chemical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780190920807.003.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

它展示了如何使用第三章的“量子配方”来建立一般分子的量子哈密顿量。在最严格的玻恩·奥本海默近似中,原子核是固定的,薛定谔方程(SE)只适用于电子。波函数取决于所有电子的位置和自旋投影。启发式地引入了电子自旋投影作为另一个二值电子自由度。电子SE不能精确求解,引入自旋轨道来构造近似波函数。泡利原理要求多电子波函数在交换电子标签时是反对称的,这导致近似轨道模型波函数作为斯莱特行列式而不是简单的哈特里积的构造。轨道模型波函数没有描述库仑电子相关,但它包含了导致泡利不相容的(费米)相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Many-electron Systems and the Pauli Principle
It is shown how the quantum Hamiltonian for a general molecule is set up, using the ‘quantum recipe’ of chapter 3. In the most restrictive Born Oppenheimer approximation, the nuclei are held fixed and the Schrodinger equation (SE) is set up for the electrons only. The wavefunction depends on the positions and spin projections of all electrons. The electron spin projection is introduced heuristically as another two-valued electron degree of freedom. The electronic SE cannot be solved exactly, and (spin-) orbitals are introduced to construct an approximate wavefunction. The Pauli principle demands that a many-electron wavefunction is antisymmetric upon the exchange of electron labels, which leads to the construction of the approximate orbital-model wavefunction as a Slater determinant rather than a simple Hartree product. The orbital model wavefunction does not describe the Coulomb electron correlation, but it incorporates the (Fermi) correlation leading to the Pauli exclusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信