Durand-Kerner型同时包含法的最优收敛条件

Octavian Cira, Cristian Cira
{"title":"Durand-Kerner型同时包含法的最优收敛条件","authors":"Octavian Cira, Cristian Cira","doi":"10.1109/SYNASC.2006.74","DOIUrl":null,"url":null,"abstract":"In order to solve the algebraic equation, where the complex polynomial has only simple zeros, one can use the simultaneous inclusion methods. The quadratic convergence condition for the Durand-Kerner simultaneous inclusion method, using point estimation theory is w(0) < d(0)/(an+b), where n is the polynomial degree, d(0) the minimum distance between the initial iterations and w(0) is the absolute maximum of the Weierstrass factors. This paper determines the optimum quadratic convergence condition for a generalized Durand-Kerner type simultaneous inclusion method","PeriodicalId":309740,"journal":{"name":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Optimum Convergence Condition for the Durand-Kerner Type Simultaneous Inclusion Method\",\"authors\":\"Octavian Cira, Cristian Cira\",\"doi\":\"10.1109/SYNASC.2006.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the algebraic equation, where the complex polynomial has only simple zeros, one can use the simultaneous inclusion methods. The quadratic convergence condition for the Durand-Kerner simultaneous inclusion method, using point estimation theory is w(0) < d(0)/(an+b), where n is the polynomial degree, d(0) the minimum distance between the initial iterations and w(0) is the absolute maximum of the Weierstrass factors. This paper determines the optimum quadratic convergence condition for a generalized Durand-Kerner type simultaneous inclusion method\",\"PeriodicalId\":309740,\"journal\":{\"name\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2006.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2006.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了求解复数多项式只有简单零的代数方程,可以使用同时包含法。采用点估计理论的Durand-Kerner同时包含法的二次收敛条件为w(0) < d(0)/(an+b),其中n为多项式次,d(0)为初始迭代与w(0)之间的最小距离为weerstrass因子的绝对最大值。本文确定了广义Durand-Kerner型同时包含法的最优二次收敛条件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Optimum Convergence Condition for the Durand-Kerner Type Simultaneous Inclusion Method
In order to solve the algebraic equation, where the complex polynomial has only simple zeros, one can use the simultaneous inclusion methods. The quadratic convergence condition for the Durand-Kerner simultaneous inclusion method, using point estimation theory is w(0) < d(0)/(an+b), where n is the polynomial degree, d(0) the minimum distance between the initial iterations and w(0) is the absolute maximum of the Weierstrass factors. This paper determines the optimum quadratic convergence condition for a generalized Durand-Kerner type simultaneous inclusion method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信