无强制条件的离散哈密顿系统无穷同宿解

F. Khelifi
{"title":"无强制条件的离散哈密顿系统无穷同宿解","authors":"F. Khelifi","doi":"10.33993/jnaat491-1204","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the existence of infinitely many solutions for the second-order self-adjoint discrete Hamiltonian system$$\\Delta\\left[p(n)\\Delta u(n-1)\\right]-L(n)u(n)+\\nabla W(n,u(n))=0, \\tag{*}$$where \\(n\\in\\mathbb{Z}, u\\in\\mathbb{R}^{N}, p,L:\\mathbb{Z}\\rightarrow\\mathbb{R}^{N\\times N}\\) and \\(W:\\mathbb{Z}\\times\\mathbb{R}^{N}\\rightarrow\\mathbb{R}\\) are no periodic in \\(n\\). The novelty of this paper is that \\(L(n)\\) is bounded in the sense that there two constants \\(0<\\tau_1<\\tau_2<\\infty\\) such that$$\\tau_1\\left|u\\right|^{2}<\\left(L(n)u,u\\right)<\\tau_2\\left|u\\right|^{2},\\;\\forall n\\in\\mathbb{Z},\\; u\\in\\mathbb{R}^{N},$$\\(W(t,u)\\) satisfies Ambrosetti-Rabinowitz condition and some other reasonable hypotheses, we show that (\\(*\\)) has infinitely many homoclinic solutions via the Symmetric Mountain Pass Theorem. Recent results in the literature are generalized and significantly improved.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely homoclinic solutions in discrete hamiltonian systems without coercive conditions\",\"authors\":\"F. Khelifi\",\"doi\":\"10.33993/jnaat491-1204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the existence of infinitely many solutions for the second-order self-adjoint discrete Hamiltonian system$$\\\\Delta\\\\left[p(n)\\\\Delta u(n-1)\\\\right]-L(n)u(n)+\\\\nabla W(n,u(n))=0, \\\\tag{*}$$where \\\\(n\\\\in\\\\mathbb{Z}, u\\\\in\\\\mathbb{R}^{N}, p,L:\\\\mathbb{Z}\\\\rightarrow\\\\mathbb{R}^{N\\\\times N}\\\\) and \\\\(W:\\\\mathbb{Z}\\\\times\\\\mathbb{R}^{N}\\\\rightarrow\\\\mathbb{R}\\\\) are no periodic in \\\\(n\\\\). The novelty of this paper is that \\\\(L(n)\\\\) is bounded in the sense that there two constants \\\\(0<\\\\tau_1<\\\\tau_2<\\\\infty\\\\) such that$$\\\\tau_1\\\\left|u\\\\right|^{2}<\\\\left(L(n)u,u\\\\right)<\\\\tau_2\\\\left|u\\\\right|^{2},\\\\;\\\\forall n\\\\in\\\\mathbb{Z},\\\\; u\\\\in\\\\mathbb{R}^{N},$$\\\\(W(t,u)\\\\) satisfies Ambrosetti-Rabinowitz condition and some other reasonable hypotheses, we show that (\\\\(*\\\\)) has infinitely many homoclinic solutions via the Symmetric Mountain Pass Theorem. Recent results in the literature are generalized and significantly improved.\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat491-1204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat491-1204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二阶自伴随离散哈密顿系统$$\Delta\left[p(n)\Delta u(n-1)\right]-L(n)u(n)+\nabla W(n,u(n))=0, \tag{*}$$的无穷多解的存在性,其中\(n\in\mathbb{Z}, u\in\mathbb{R}^{N}, p,L:\mathbb{Z}\rightarrow\mathbb{R}^{N\times N}\)和\(W:\mathbb{Z}\times\mathbb{R}^{N}\rightarrow\mathbb{R}\)在\(n\)中是无周期的。本文的新颖之处在于\(L(n)\)是有界的,即存在两个常数\(0<\tau_1<\tau_2<\infty\)使得$$\tau_1\left|u\right|^{2}<\left(L(n)u,u\right)<\tau_2\left|u\right|^{2},\;\forall n\in\mathbb{Z},\; u\in\mathbb{R}^{N},$$\(W(t,u)\)满足Ambrosetti-Rabinowitz条件和其他一些合理的假设,我们通过对称山口定理证明了(\(*\))有无穷多个同拟解。最近的研究结果在文献中得到了推广和显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitely homoclinic solutions in discrete hamiltonian systems without coercive conditions
In this paper, we investigate the existence of infinitely many solutions for the second-order self-adjoint discrete Hamiltonian system$$\Delta\left[p(n)\Delta u(n-1)\right]-L(n)u(n)+\nabla W(n,u(n))=0, \tag{*}$$where \(n\in\mathbb{Z}, u\in\mathbb{R}^{N}, p,L:\mathbb{Z}\rightarrow\mathbb{R}^{N\times N}\) and \(W:\mathbb{Z}\times\mathbb{R}^{N}\rightarrow\mathbb{R}\) are no periodic in \(n\). The novelty of this paper is that \(L(n)\) is bounded in the sense that there two constants \(0<\tau_1<\tau_2<\infty\) such that$$\tau_1\left|u\right|^{2}<\left(L(n)u,u\right)<\tau_2\left|u\right|^{2},\;\forall n\in\mathbb{Z},\; u\in\mathbb{R}^{N},$$\(W(t,u)\) satisfies Ambrosetti-Rabinowitz condition and some other reasonable hypotheses, we show that (\(*\)) has infinitely many homoclinic solutions via the Symmetric Mountain Pass Theorem. Recent results in the literature are generalized and significantly improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信