一种使用新的q-Gabor函数作为卷积滤波器的MRI肿瘤检测方法

Vinicius de A. Silva, Lucas P. Laheras, Éverton C. Acchetta, P. S. Rodrigues
{"title":"一种使用新的q-Gabor函数作为卷积滤波器的MRI肿瘤检测方法","authors":"Vinicius de A. Silva, Lucas P. Laheras, Éverton C. Acchetta, P. S. Rodrigues","doi":"10.5753/wvc.2021.18908","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNN) can achieve excellent computer-assisted diagnosis with a good amount of data. However, there is still a growing demand for specific data and information for training Machine Learning models, either for classification or other tasks such as segmentation. Towards this, the Data Augmentation (DA) technique can handle the small medical imaging dataset problem by generating artificial training data. In this context, Generative Adversarial Networks (GANs) can synthesize realistic images to increase the number of images in a dataset. Therefore, to maximize the DA efficiency in a CNNbased tumor classification task, we propose using non-extensive Gabor filters as a convolutional layer kernel initializer. Our proposal has been tested in the BraTS15 dataset and results show that CNN with an additional q-Gabor layer can achieve an average accuracy 3.65% better than CNN with Gabor and 5.03% better than the default model when trained with artificial images (data augmentation).","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Methodology for Tumor Detection in MRI using a New q-Gabor Function as a Convolutional Filter\",\"authors\":\"Vinicius de A. Silva, Lucas P. Laheras, Éverton C. Acchetta, P. S. Rodrigues\",\"doi\":\"10.5753/wvc.2021.18908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNN) can achieve excellent computer-assisted diagnosis with a good amount of data. However, there is still a growing demand for specific data and information for training Machine Learning models, either for classification or other tasks such as segmentation. Towards this, the Data Augmentation (DA) technique can handle the small medical imaging dataset problem by generating artificial training data. In this context, Generative Adversarial Networks (GANs) can synthesize realistic images to increase the number of images in a dataset. Therefore, to maximize the DA efficiency in a CNNbased tumor classification task, we propose using non-extensive Gabor filters as a convolutional layer kernel initializer. Our proposal has been tested in the BraTS15 dataset and results show that CNN with an additional q-Gabor layer can achieve an average accuracy 3.65% better than CNN with Gabor and 5.03% better than the default model when trained with artificial images (data augmentation).\",\"PeriodicalId\":311431,\"journal\":{\"name\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wvc.2021.18908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)可以通过大量的数据实现出色的计算机辅助诊断。然而,对于训练机器学习模型的特定数据和信息的需求仍然在不断增长,无论是用于分类还是其他任务,如分割。为此,数据增强(DA)技术可以通过生成人工训练数据来处理小型医学成像数据集问题。在这种情况下,生成对抗网络(GANs)可以合成逼真的图像来增加数据集中的图像数量。因此,为了在基于cnn的肿瘤分类任务中最大化DA效率,我们提出使用非扩展Gabor滤波器作为卷积层核初始化器。我们的建议已经在BraTS15数据集中进行了测试,结果表明,当使用人工图像(数据增强)训练时,增加q-Gabor层的CNN平均准确率比使用Gabor的CNN高3.65%,比默认模型高5.03%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Methodology for Tumor Detection in MRI using a New q-Gabor Function as a Convolutional Filter
Convolutional Neural Networks (CNN) can achieve excellent computer-assisted diagnosis with a good amount of data. However, there is still a growing demand for specific data and information for training Machine Learning models, either for classification or other tasks such as segmentation. Towards this, the Data Augmentation (DA) technique can handle the small medical imaging dataset problem by generating artificial training data. In this context, Generative Adversarial Networks (GANs) can synthesize realistic images to increase the number of images in a dataset. Therefore, to maximize the DA efficiency in a CNNbased tumor classification task, we propose using non-extensive Gabor filters as a convolutional layer kernel initializer. Our proposal has been tested in the BraTS15 dataset and results show that CNN with an additional q-Gabor layer can achieve an average accuracy 3.65% better than CNN with Gabor and 5.03% better than the default model when trained with artificial images (data augmentation).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信