波散射理论中的表面积分法

N. V. Bondarenko, N. Shul'ga
{"title":"波散射理论中的表面积分法","authors":"N. V. Bondarenko, N. Shul'ga","doi":"10.1109/MMET.2000.890536","DOIUrl":null,"url":null,"abstract":"The scattering of fast charged particles and electromagnetic waves on a scatterer, localized in the space domain is considered. It is shown that the scattering amplitude can be expressed in this case as an integral over an arbitrary closed surface enclosing the scatterer. This representation enables us to express the scattering amplitude as an integral over impact parameters in general case and to develop a simple method for calculation corrections to the eikonal amplitude.","PeriodicalId":344401,"journal":{"name":"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The method of surface integral in the theory of wave scattering\",\"authors\":\"N. V. Bondarenko, N. Shul'ga\",\"doi\":\"10.1109/MMET.2000.890536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scattering of fast charged particles and electromagnetic waves on a scatterer, localized in the space domain is considered. It is shown that the scattering amplitude can be expressed in this case as an integral over an arbitrary closed surface enclosing the scatterer. This representation enables us to express the scattering amplitude as an integral over impact parameters in general case and to develop a simple method for calculation corrections to the eikonal amplitude.\",\"PeriodicalId\":344401,\"journal\":{\"name\":\"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.2000.890536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2000.890536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了快带电粒子和电磁波在空间局域散射体上的散射问题。结果表明,在这种情况下,散射振幅可以表示为任意封闭表面上的积分。这种表示使我们能够在一般情况下将散射振幅表示为对冲击参数的积分,并开发出一种简单的方法来计算对角振幅的修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The method of surface integral in the theory of wave scattering
The scattering of fast charged particles and electromagnetic waves on a scatterer, localized in the space domain is considered. It is shown that the scattering amplitude can be expressed in this case as an integral over an arbitrary closed surface enclosing the scatterer. This representation enables us to express the scattering amplitude as an integral over impact parameters in general case and to develop a simple method for calculation corrections to the eikonal amplitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信