来自维基百科的阿拉伯医学术语汇编

J. Vivaldi, H. Rodríguez
{"title":"来自维基百科的阿拉伯医学术语汇编","authors":"J. Vivaldi, H. Rodríguez","doi":"10.1109/CIST.2014.7016627","DOIUrl":null,"url":null,"abstract":"Domain terms are a useful mean for tuning both resources and NLP processors to domain specific tasks. This paper proposes an improved method for obtaining terms from potentially any domain using the Wikipedia graph structure as a knowledge source.","PeriodicalId":106483,"journal":{"name":"2014 Third IEEE International Colloquium in Information Science and Technology (CIST)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Arabic medical terms compilation from Wikipedia\",\"authors\":\"J. Vivaldi, H. Rodríguez\",\"doi\":\"10.1109/CIST.2014.7016627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain terms are a useful mean for tuning both resources and NLP processors to domain specific tasks. This paper proposes an improved method for obtaining terms from potentially any domain using the Wikipedia graph structure as a knowledge source.\",\"PeriodicalId\":106483,\"journal\":{\"name\":\"2014 Third IEEE International Colloquium in Information Science and Technology (CIST)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Third IEEE International Colloquium in Information Science and Technology (CIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIST.2014.7016627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Third IEEE International Colloquium in Information Science and Technology (CIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIST.2014.7016627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

领域术语是将资源和NLP处理器调优到特定领域任务的有用方法。本文提出了一种改进的方法,利用维基百科图结构作为知识来源,从潜在的任何领域获取术语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arabic medical terms compilation from Wikipedia
Domain terms are a useful mean for tuning both resources and NLP processors to domain specific tasks. This paper proposes an improved method for obtaining terms from potentially any domain using the Wikipedia graph structure as a knowledge source.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信