{"title":"基于空间注意模块的切伦科夫激发有限角度发光扫描层析成像","authors":"Mengfan Geng, Hu Zhang, Jingyue Zhang, Kebin Jia, Zhonghua Sun, Zhe Li, Jinchao Feng","doi":"10.1117/12.2682920","DOIUrl":null,"url":null,"abstract":"Cherenkov-Excited Luminescence Scanned Tomography (CELST) is a new emerging imaging modality, which uses the Cherenkov light to excite fluorophores for tomographic imaging. In order to improve the imaging depth and spatial resolution, a rotational CELST was developed to scan the imaging object to produce sinogram data, and a Filtered Back Projection (FBP) was used to recover the distribution of fluorophores. However, the images reconstructed by FBP are usually corrupted by artifacts due to measurements from limited angles. To reduce the artifacts, we propose a deep learning-based reconstruction algorithm (SAM-Unet), which is based on a fully convolutional deep neural network with U-Net structure, and a spatial attention module was added between the encoder and the decoder. The image features extracted by the spatial attention module are transferred to the decoder through a skip connection structure. The effectiveness of the proposed SAM-Unet is verified by numerical experiments, and the results show that the SAM-Unet can improve the mean square error (MSE) (97.5%), Peak Signal-To-Noise Ratio (PSNR) (81.9%) and Structure Similarity Index Measure (SSIM) (63.4%) compared with the FBP algorithm. Compared with the deep learning method U-Net, the MSE improved 39.8%, the PSNR improved 8.0% and SSIM improved 2.6%.","PeriodicalId":110373,"journal":{"name":"International Conference on Photonics and Imaging in Biology and Medicine","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limited-angle cherenkov-excited luminescence scanned tomography reconstruction based on spatial attention module\",\"authors\":\"Mengfan Geng, Hu Zhang, Jingyue Zhang, Kebin Jia, Zhonghua Sun, Zhe Li, Jinchao Feng\",\"doi\":\"10.1117/12.2682920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cherenkov-Excited Luminescence Scanned Tomography (CELST) is a new emerging imaging modality, which uses the Cherenkov light to excite fluorophores for tomographic imaging. In order to improve the imaging depth and spatial resolution, a rotational CELST was developed to scan the imaging object to produce sinogram data, and a Filtered Back Projection (FBP) was used to recover the distribution of fluorophores. However, the images reconstructed by FBP are usually corrupted by artifacts due to measurements from limited angles. To reduce the artifacts, we propose a deep learning-based reconstruction algorithm (SAM-Unet), which is based on a fully convolutional deep neural network with U-Net structure, and a spatial attention module was added between the encoder and the decoder. The image features extracted by the spatial attention module are transferred to the decoder through a skip connection structure. The effectiveness of the proposed SAM-Unet is verified by numerical experiments, and the results show that the SAM-Unet can improve the mean square error (MSE) (97.5%), Peak Signal-To-Noise Ratio (PSNR) (81.9%) and Structure Similarity Index Measure (SSIM) (63.4%) compared with the FBP algorithm. Compared with the deep learning method U-Net, the MSE improved 39.8%, the PSNR improved 8.0% and SSIM improved 2.6%.\",\"PeriodicalId\":110373,\"journal\":{\"name\":\"International Conference on Photonics and Imaging in Biology and Medicine\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Photonics and Imaging in Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2682920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics and Imaging in Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Limited-angle cherenkov-excited luminescence scanned tomography reconstruction based on spatial attention module
Cherenkov-Excited Luminescence Scanned Tomography (CELST) is a new emerging imaging modality, which uses the Cherenkov light to excite fluorophores for tomographic imaging. In order to improve the imaging depth and spatial resolution, a rotational CELST was developed to scan the imaging object to produce sinogram data, and a Filtered Back Projection (FBP) was used to recover the distribution of fluorophores. However, the images reconstructed by FBP are usually corrupted by artifacts due to measurements from limited angles. To reduce the artifacts, we propose a deep learning-based reconstruction algorithm (SAM-Unet), which is based on a fully convolutional deep neural network with U-Net structure, and a spatial attention module was added between the encoder and the decoder. The image features extracted by the spatial attention module are transferred to the decoder through a skip connection structure. The effectiveness of the proposed SAM-Unet is verified by numerical experiments, and the results show that the SAM-Unet can improve the mean square error (MSE) (97.5%), Peak Signal-To-Noise Ratio (PSNR) (81.9%) and Structure Similarity Index Measure (SSIM) (63.4%) compared with the FBP algorithm. Compared with the deep learning method U-Net, the MSE improved 39.8%, the PSNR improved 8.0% and SSIM improved 2.6%.