具有不同总体规模和疫苗接种的SEIR模型的定性分析

Huitao Zhao, Yunxian Dai, Yiping Lin
{"title":"具有不同总体规模和疫苗接种的SEIR模型的定性分析","authors":"Huitao Zhao, Yunxian Dai, Yiping Lin","doi":"10.1109/IWCFTA.2012.31","DOIUrl":null,"url":null,"abstract":"An SEIR model with varying total population size and continuous vaccination is proposed. The stability of the disease-free equilibrium is discussed, and the global stability of the disease-free equilibrium is discussed with the Lasalle's invariance principle. Using analytical methods, the existence and uniqueness of the positive equilibrium are obtained, and it's stability is also discussed by Routh-Hurwith criterion. Finally, numerical simulations are also included.","PeriodicalId":354870,"journal":{"name":"2012 Fifth International Workshop on Chaos-fractals Theories and Applications","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative Analysis of an SEIR Model with Varying Total Population Size and Vaccination\",\"authors\":\"Huitao Zhao, Yunxian Dai, Yiping Lin\",\"doi\":\"10.1109/IWCFTA.2012.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An SEIR model with varying total population size and continuous vaccination is proposed. The stability of the disease-free equilibrium is discussed, and the global stability of the disease-free equilibrium is discussed with the Lasalle's invariance principle. Using analytical methods, the existence and uniqueness of the positive equilibrium are obtained, and it's stability is also discussed by Routh-Hurwith criterion. Finally, numerical simulations are also included.\",\"PeriodicalId\":354870,\"journal\":{\"name\":\"2012 Fifth International Workshop on Chaos-fractals Theories and Applications\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Workshop on Chaos-fractals Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCFTA.2012.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Workshop on Chaos-fractals Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2012.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一个总人口规模变化和连续接种的SEIR模型。讨论了无病平衡点的稳定性,并利用Lasalle不变性原理讨论了无病平衡点的全局稳定性。利用解析方法,得到了正平衡的存在唯一性,并用Routh-Hurwith判据讨论了正平衡的稳定性。最后进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative Analysis of an SEIR Model with Varying Total Population Size and Vaccination
An SEIR model with varying total population size and continuous vaccination is proposed. The stability of the disease-free equilibrium is discussed, and the global stability of the disease-free equilibrium is discussed with the Lasalle's invariance principle. Using analytical methods, the existence and uniqueness of the positive equilibrium are obtained, and it's stability is also discussed by Routh-Hurwith criterion. Finally, numerical simulations are also included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信