高阶递推格式的模态mu -微积分模型检验的等效类型系统

N. Kobayashi, C. Ong
{"title":"高阶递推格式的模态mu -微积分模型检验的等效类型系统","authors":"N. Kobayashi, C. Ong","doi":"10.1109/LICS.2009.29","DOIUrl":null,"url":null,"abstract":"The model checking of higher-order recursion schemes has important applications in the verification of higher-order programs. Ong has previously shown that the modal mu-calculus model checking of trees generated by order-n recursion scheme is n-EXPTIME complete, but his algorithm and its correctness proof were rather complex. We give an alternative, type-based verification method: Given a modal mu-calculus formula, we can construct a type system in which a recursion scheme is typable if, and only if, the (possibly infinite, ranked) tree generated by the scheme satisfies the formula. The model checking problem is thus reduced to a type checking problem. Our type-based approach yields a simple verification algorithm, and its correctness proof (constructed without recourse to game semantics) is comparatively easy to understand. Furthermore, the algorithm is polynomial-time in the size of the recursion scheme, assuming that the formula and the largest order and arity of non-terminals of the recursion scheme are fixed.","PeriodicalId":415902,"journal":{"name":"2009 24th Annual IEEE Symposium on Logic In Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":"{\"title\":\"A Type System Equivalent to the Modal Mu-Calculus Model Checking of Higher-Order Recursion Schemes\",\"authors\":\"N. Kobayashi, C. Ong\",\"doi\":\"10.1109/LICS.2009.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The model checking of higher-order recursion schemes has important applications in the verification of higher-order programs. Ong has previously shown that the modal mu-calculus model checking of trees generated by order-n recursion scheme is n-EXPTIME complete, but his algorithm and its correctness proof were rather complex. We give an alternative, type-based verification method: Given a modal mu-calculus formula, we can construct a type system in which a recursion scheme is typable if, and only if, the (possibly infinite, ranked) tree generated by the scheme satisfies the formula. The model checking problem is thus reduced to a type checking problem. Our type-based approach yields a simple verification algorithm, and its correctness proof (constructed without recourse to game semantics) is comparatively easy to understand. Furthermore, the algorithm is polynomial-time in the size of the recursion scheme, assuming that the formula and the largest order and arity of non-terminals of the recursion scheme are fixed.\",\"PeriodicalId\":415902,\"journal\":{\"name\":\"2009 24th Annual IEEE Symposium on Logic In Computer Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"155\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 24th Annual IEEE Symposium on Logic In Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2009.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Symposium on Logic In Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2009.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 155

摘要

高阶递归格式的模型检验在高阶程序的验证中有着重要的应用。Ong之前已经证明了由o -n递归方案生成的树的模态mu演算模型检验是n-EXPTIME完备的,但他的算法及其正确性证明相当复杂。我们给出了另一种基于类型的验证方法:给定一个模态模微积分公式,我们可以构造一个类型系统,当且仅当由该方案生成的(可能是无限的,排序的)树满足该公式时,递归方案是可类型的。因此,模型检查问题被简化为类型检查问题。我们基于类型的方法产生了一个简单的验证算法,其正确性证明(不依赖于游戏语义构建)相对容易理解。此外,该算法在递归格式的大小上是多项式时间的,假设递归格式的公式和非末端的最大阶数和次数是固定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Type System Equivalent to the Modal Mu-Calculus Model Checking of Higher-Order Recursion Schemes
The model checking of higher-order recursion schemes has important applications in the verification of higher-order programs. Ong has previously shown that the modal mu-calculus model checking of trees generated by order-n recursion scheme is n-EXPTIME complete, but his algorithm and its correctness proof were rather complex. We give an alternative, type-based verification method: Given a modal mu-calculus formula, we can construct a type system in which a recursion scheme is typable if, and only if, the (possibly infinite, ranked) tree generated by the scheme satisfies the formula. The model checking problem is thus reduced to a type checking problem. Our type-based approach yields a simple verification algorithm, and its correctness proof (constructed without recourse to game semantics) is comparatively easy to understand. Furthermore, the algorithm is polynomial-time in the size of the recursion scheme, assuming that the formula and the largest order and arity of non-terminals of the recursion scheme are fixed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信