JavaBERT:为Java编程语言训练一个基于转换器的模型

Nelson Tavares de Sousa, W. Hasselbring
{"title":"JavaBERT:为Java编程语言训练一个基于转换器的模型","authors":"Nelson Tavares de Sousa, W. Hasselbring","doi":"10.1109/ASEW52652.2021.00028","DOIUrl":null,"url":null,"abstract":"Code quality is and will be a crucial factor while developing new software code, requiring appropriate tools to ensure functional and reliable code. Machine learning techniques are still rarely used for software engineering tools, missing out the potential benefits of its application. Natural language processing has shown the potential to process text data regarding a variety of tasks. We argue, that such models can also show similar benefits for software code processing. In this paper, we investigate how models used for natural language processing can be trained upon software code. We introduce a data retrieval pipeline for software code and train a model upon Java software code. The resulting model, JavaBERT, shows a high accuracy on the masked language modeling task showing its potential for software engineering tools.","PeriodicalId":349977,"journal":{"name":"2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW)","volume":"312 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"JavaBERT: Training a Transformer-Based Model for the Java Programming Language\",\"authors\":\"Nelson Tavares de Sousa, W. Hasselbring\",\"doi\":\"10.1109/ASEW52652.2021.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Code quality is and will be a crucial factor while developing new software code, requiring appropriate tools to ensure functional and reliable code. Machine learning techniques are still rarely used for software engineering tools, missing out the potential benefits of its application. Natural language processing has shown the potential to process text data regarding a variety of tasks. We argue, that such models can also show similar benefits for software code processing. In this paper, we investigate how models used for natural language processing can be trained upon software code. We introduce a data retrieval pipeline for software code and train a model upon Java software code. The resulting model, JavaBERT, shows a high accuracy on the masked language modeling task showing its potential for software engineering tools.\",\"PeriodicalId\":349977,\"journal\":{\"name\":\"2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW)\",\"volume\":\"312 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASEW52652.2021.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASEW52652.2021.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在开发新的软件代码时,代码质量将是一个至关重要的因素,需要适当的工具来确保代码的功能和可靠性。机器学习技术仍然很少用于软件工程工具,错过了其应用的潜在好处。自然语言处理已经显示出处理关于各种任务的文本数据的潜力。我们认为,这样的模型也可以在软件代码处理中显示出类似的好处。在本文中,我们研究了如何在软件代码上训练用于自然语言处理的模型。介绍了一种用于软件代码的数据检索管道,并在Java软件代码上训练了一个模型。得到的模型JavaBERT在屏蔽语言建模任务上显示出了很高的准确性,显示了它作为软件工程工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
JavaBERT: Training a Transformer-Based Model for the Java Programming Language
Code quality is and will be a crucial factor while developing new software code, requiring appropriate tools to ensure functional and reliable code. Machine learning techniques are still rarely used for software engineering tools, missing out the potential benefits of its application. Natural language processing has shown the potential to process text data regarding a variety of tasks. We argue, that such models can also show similar benefits for software code processing. In this paper, we investigate how models used for natural language processing can be trained upon software code. We introduce a data retrieval pipeline for software code and train a model upon Java software code. The resulting model, JavaBERT, shows a high accuracy on the masked language modeling task showing its potential for software engineering tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信