负载感知混合分区

Trupti Padiya, Jai Jai Kanwar, Minal Bhise
{"title":"负载感知混合分区","authors":"Trupti Padiya, Jai Jai Kanwar, Minal Bhise","doi":"10.1145/2998476.2998479","DOIUrl":null,"url":null,"abstract":"Real life databases exhibit highly skewed access patterns. These skewed access patterns can be exploited to partition the data considering the query workload. The presented work proposes Workload Aware Hybrid Partitioning (WAHP). WAHP identifies clusters of attributes which are queried together. It identifies workload aware clusters for the actual query workload using a hybrid combination of horizontal and vertical partitioning. The paper demonstrates WAHP experiment using TPC-C benchmark, where 9% of the actual TPC-C data in workload aware clusters, is able to answer 73% of hottest query-workload with an average execution time gain of 37% against original database.","PeriodicalId":171399,"journal":{"name":"Proceedings of the 9th Annual ACM India Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Workload Aware Hybrid Partitioning\",\"authors\":\"Trupti Padiya, Jai Jai Kanwar, Minal Bhise\",\"doi\":\"10.1145/2998476.2998479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real life databases exhibit highly skewed access patterns. These skewed access patterns can be exploited to partition the data considering the query workload. The presented work proposes Workload Aware Hybrid Partitioning (WAHP). WAHP identifies clusters of attributes which are queried together. It identifies workload aware clusters for the actual query workload using a hybrid combination of horizontal and vertical partitioning. The paper demonstrates WAHP experiment using TPC-C benchmark, where 9% of the actual TPC-C data in workload aware clusters, is able to answer 73% of hottest query-workload with an average execution time gain of 37% against original database.\",\"PeriodicalId\":171399,\"journal\":{\"name\":\"Proceedings of the 9th Annual ACM India Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th Annual ACM India Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2998476.2998479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th Annual ACM India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2998476.2998479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

现实生活中的数据库显示出高度倾斜的访问模式。可以利用这些倾斜的访问模式根据查询工作负载对数据进行分区。本文提出了工作负载感知混合分区(WAHP)。WAHP标识一起查询的属性集群。它使用水平和垂直分区的混合组合为实际查询工作负载识别工作负载感知集群。本文演示了使用TPC-C基准的WAHP实验,其中9%的实际TPC-C数据在工作负载感知集群中,能够回答73%的最热查询工作负载,相对于原始数据库的平均执行时间增益为37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Workload Aware Hybrid Partitioning
Real life databases exhibit highly skewed access patterns. These skewed access patterns can be exploited to partition the data considering the query workload. The presented work proposes Workload Aware Hybrid Partitioning (WAHP). WAHP identifies clusters of attributes which are queried together. It identifies workload aware clusters for the actual query workload using a hybrid combination of horizontal and vertical partitioning. The paper demonstrates WAHP experiment using TPC-C benchmark, where 9% of the actual TPC-C data in workload aware clusters, is able to answer 73% of hottest query-workload with an average execution time gain of 37% against original database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信