{"title":"量子积分算子的三角不等式","authors":"A. Aglić Aljinović, I. Brnetić, Ana Žgaljić Keko","doi":"10.32817/ams.2.7","DOIUrl":null,"url":null,"abstract":"We show that general integral triangle inequality does not hold for shifted q-integrals. Furthermore, we obtain a triangle inequality for shifted qintegrals. We also give an estimate for q-integrable product and use it to refine some recently obtained Ostrowski inequalities for quantum calculus.","PeriodicalId":309225,"journal":{"name":"Acta mathematica Spalatensia","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triangle inequality for quantum integral operator\",\"authors\":\"A. Aglić Aljinović, I. Brnetić, Ana Žgaljić Keko\",\"doi\":\"10.32817/ams.2.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that general integral triangle inequality does not hold for shifted q-integrals. Furthermore, we obtain a triangle inequality for shifted qintegrals. We also give an estimate for q-integrable product and use it to refine some recently obtained Ostrowski inequalities for quantum calculus.\",\"PeriodicalId\":309225,\"journal\":{\"name\":\"Acta mathematica Spalatensia\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta mathematica Spalatensia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32817/ams.2.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta mathematica Spalatensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32817/ams.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that general integral triangle inequality does not hold for shifted q-integrals. Furthermore, we obtain a triangle inequality for shifted qintegrals. We also give an estimate for q-integrable product and use it to refine some recently obtained Ostrowski inequalities for quantum calculus.