基于卷积神经网络的高光谱分类参数优选

Qiaoqiao Sun, Xuefeng Liu, S. Bourennane
{"title":"基于卷积神经网络的高光谱分类参数优选","authors":"Qiaoqiao Sun, Xuefeng Liu, S. Bourennane","doi":"10.1109/icfsp48124.2019.8938098","DOIUrl":null,"url":null,"abstract":"Classification is a key technique in hyperspectral image (HSI) applications. Deep learning algorithms, which exhibit strong modeling and representational capabilities, have been successfully adopted in fields such as image and language processing. And convolutional neural networks (CNNs) have been used for HSI classification and some interesting results have been obtained. Owing to local connection and weight sharing, the number of parameters is reduced to some extent, but there are still many parameters and the deeper the network, the larger is the number of parameters. The network performance is strongly influenced by the parameter settings. To obtain the optimal CNN parameters for HSI classification, this paper proposes a classification method based on a CNN with parameter tuning (CNN-PT). The network parameters are tuned in turn according to the unique variable principle. Simulation results show that the proposed CNN-PT method has considerable potential for HSI classification compared to previous methods.","PeriodicalId":162584,"journal":{"name":"2019 5th International Conference on Frontiers of Signal Processing (ICFSP)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Parameter Selection in Hyperspectral Classification Based on Convolutional Neural Network\",\"authors\":\"Qiaoqiao Sun, Xuefeng Liu, S. Bourennane\",\"doi\":\"10.1109/icfsp48124.2019.8938098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification is a key technique in hyperspectral image (HSI) applications. Deep learning algorithms, which exhibit strong modeling and representational capabilities, have been successfully adopted in fields such as image and language processing. And convolutional neural networks (CNNs) have been used for HSI classification and some interesting results have been obtained. Owing to local connection and weight sharing, the number of parameters is reduced to some extent, but there are still many parameters and the deeper the network, the larger is the number of parameters. The network performance is strongly influenced by the parameter settings. To obtain the optimal CNN parameters for HSI classification, this paper proposes a classification method based on a CNN with parameter tuning (CNN-PT). The network parameters are tuned in turn according to the unique variable principle. Simulation results show that the proposed CNN-PT method has considerable potential for HSI classification compared to previous methods.\",\"PeriodicalId\":162584,\"journal\":{\"name\":\"2019 5th International Conference on Frontiers of Signal Processing (ICFSP)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th International Conference on Frontiers of Signal Processing (ICFSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icfsp48124.2019.8938098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Frontiers of Signal Processing (ICFSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icfsp48124.2019.8938098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分类是高光谱图像应用中的一项关键技术。深度学习算法表现出强大的建模和表征能力,已成功应用于图像和语言处理等领域。卷积神经网络(cnn)已被用于HSI分类,并获得了一些有趣的结果。由于局部连接和权值共享,在一定程度上减少了参数的数量,但仍然存在很多参数,而且网络越深,参数的数量越大。参数设置对网络性能影响较大。为了获得用于HSI分类的最优CNN参数,本文提出了一种基于参数可调CNN的分类方法(CNN- pt)。网络参数按唯一变量原则依次调整。仿真结果表明,与现有方法相比,本文提出的CNN-PT方法在HSI分类方面具有相当大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Parameter Selection in Hyperspectral Classification Based on Convolutional Neural Network
Classification is a key technique in hyperspectral image (HSI) applications. Deep learning algorithms, which exhibit strong modeling and representational capabilities, have been successfully adopted in fields such as image and language processing. And convolutional neural networks (CNNs) have been used for HSI classification and some interesting results have been obtained. Owing to local connection and weight sharing, the number of parameters is reduced to some extent, but there are still many parameters and the deeper the network, the larger is the number of parameters. The network performance is strongly influenced by the parameter settings. To obtain the optimal CNN parameters for HSI classification, this paper proposes a classification method based on a CNN with parameter tuning (CNN-PT). The network parameters are tuned in turn according to the unique variable principle. Simulation results show that the proposed CNN-PT method has considerable potential for HSI classification compared to previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信