跨胫截肢患者肢体-窝界面定向压力卸载的超材料设计

Nathan K. Brown, M. Owen, J. DesJardins, Anthony P. Garland, G. Fadel
{"title":"跨胫截肢患者肢体-窝界面定向压力卸载的超材料设计","authors":"Nathan K. Brown, M. Owen, J. DesJardins, Anthony P. Garland, G. Fadel","doi":"10.1115/detc2020-22044","DOIUrl":null,"url":null,"abstract":"\n While using a prosthesis, transtibial amputees can experience pain and discomfort brought on by large pressure gradients, at the interface between the residual limb and prosthetic socket. Current prosthetic interface solutions attempt to alleviate these pressure gradients by using soft homogenous liners to reduce and distribute pressures. This research investigates an additively manufactured metamaterial inlay with adjustable mechanical response in order to reduce peak pressure gradients around the limb. The inlay uses a hyperelastic behaving metamaterial (US10244818) comprised of triangular pattern unit cells which can be 3D printed with walls of various thicknesses controlled by draft angles. The hyperelastic material properties are modeled using a third order representation based on Yeoh 3rd order coefficients. The 3rd order coefficients can be adjusted and optimized to represent a change in the unit cell wall thickness to create an inlay that can meet the unique offloading needs of an amputee. Finite element analyses evaluated the pressure gradient reduction from: 1) A common homogenous silicone liner, 2) A prosthetist’s inlay prescription that utilizes three variations of the metamaterial, and 3) A metamaterial solution with optimized Yeoh 3rd order coefficients. When compared to a traditional homogenous silicone liner for two unique limb loading scenarios, the prosthetist prescribed inlay and optimized material inlay can achieve equal or greater pressure gradient reduction capabilities. These results show the potential feasibility of implementing this metamaterial as a method of personalized medicine for transtibial amputees by creating customizable interface solution to the meet unique performance needs of an individual patient.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Metamaterial Design for Targeted Limb-Socket Interface Pressure Offloading in Transtibial Amputees\",\"authors\":\"Nathan K. Brown, M. Owen, J. DesJardins, Anthony P. Garland, G. Fadel\",\"doi\":\"10.1115/detc2020-22044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n While using a prosthesis, transtibial amputees can experience pain and discomfort brought on by large pressure gradients, at the interface between the residual limb and prosthetic socket. Current prosthetic interface solutions attempt to alleviate these pressure gradients by using soft homogenous liners to reduce and distribute pressures. This research investigates an additively manufactured metamaterial inlay with adjustable mechanical response in order to reduce peak pressure gradients around the limb. The inlay uses a hyperelastic behaving metamaterial (US10244818) comprised of triangular pattern unit cells which can be 3D printed with walls of various thicknesses controlled by draft angles. The hyperelastic material properties are modeled using a third order representation based on Yeoh 3rd order coefficients. The 3rd order coefficients can be adjusted and optimized to represent a change in the unit cell wall thickness to create an inlay that can meet the unique offloading needs of an amputee. Finite element analyses evaluated the pressure gradient reduction from: 1) A common homogenous silicone liner, 2) A prosthetist’s inlay prescription that utilizes three variations of the metamaterial, and 3) A metamaterial solution with optimized Yeoh 3rd order coefficients. When compared to a traditional homogenous silicone liner for two unique limb loading scenarios, the prosthetist prescribed inlay and optimized material inlay can achieve equal or greater pressure gradient reduction capabilities. These results show the potential feasibility of implementing this metamaterial as a method of personalized medicine for transtibial amputees by creating customizable interface solution to the meet unique performance needs of an individual patient.\",\"PeriodicalId\":415040,\"journal\":{\"name\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在使用义肢时,经胫截肢者在残肢和义肢窝之间的界面处会感受到巨大的压力梯度带来的疼痛和不适。目前的假体界面解决方案试图通过使用柔软的均匀衬垫来减少和分配压力来减轻这些压力梯度。本文研究了一种增材制造的具有可调机械响应的超材料嵌体,以降低四肢周围的峰值压力梯度。嵌体使用一种超弹性的超材料(US10244818),由三角形图案单元组成,可以3D打印出各种厚度的壁,由draft角控制。采用基于Yeoh三阶系数的三阶表示对超弹性材料的性能进行了建模。可以调整和优化三阶系数,以表示单位细胞壁厚度的变化,从而创建可以满足截肢者独特卸载需求的嵌体。有限元分析评估了压力梯度的降低:1)普通的均匀硅胶衬垫,2)使用三种不同的超材料的假体嵌体处方,以及3)优化杨氏三阶系数的超材料解决方案。与传统的均质硅胶衬垫相比,在两种独特的肢体负载情况下,义肢医生规定的嵌体和优化的材料嵌体可以实现相同或更大的压力梯度减少能力。这些结果表明,通过创建可定制的接口解决方案来满足个体患者独特的性能需求,将这种超材料作为一种个性化治疗方法用于跨胫截肢患者的潜在可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metamaterial Design for Targeted Limb-Socket Interface Pressure Offloading in Transtibial Amputees
While using a prosthesis, transtibial amputees can experience pain and discomfort brought on by large pressure gradients, at the interface between the residual limb and prosthetic socket. Current prosthetic interface solutions attempt to alleviate these pressure gradients by using soft homogenous liners to reduce and distribute pressures. This research investigates an additively manufactured metamaterial inlay with adjustable mechanical response in order to reduce peak pressure gradients around the limb. The inlay uses a hyperelastic behaving metamaterial (US10244818) comprised of triangular pattern unit cells which can be 3D printed with walls of various thicknesses controlled by draft angles. The hyperelastic material properties are modeled using a third order representation based on Yeoh 3rd order coefficients. The 3rd order coefficients can be adjusted and optimized to represent a change in the unit cell wall thickness to create an inlay that can meet the unique offloading needs of an amputee. Finite element analyses evaluated the pressure gradient reduction from: 1) A common homogenous silicone liner, 2) A prosthetist’s inlay prescription that utilizes three variations of the metamaterial, and 3) A metamaterial solution with optimized Yeoh 3rd order coefficients. When compared to a traditional homogenous silicone liner for two unique limb loading scenarios, the prosthetist prescribed inlay and optimized material inlay can achieve equal or greater pressure gradient reduction capabilities. These results show the potential feasibility of implementing this metamaterial as a method of personalized medicine for transtibial amputees by creating customizable interface solution to the meet unique performance needs of an individual patient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信