眼动数据的动态图形可视化视角

Michael Burch, Fabian Beck, Michael Raschke, Tanja Blascheck, D. Weiskopf
{"title":"眼动数据的动态图形可视化视角","authors":"Michael Burch, Fabian Beck, Michael Raschke, Tanja Blascheck, D. Weiskopf","doi":"10.1145/2578153.2578175","DOIUrl":null,"url":null,"abstract":"During eye tracking studies, vast amounts of spatio-temporal data in the form of eye gaze trajectories are recorded. Finding insights into these time-varying data sets is a challenging task. Visualization techniques such as heat maps or gaze plots help find patterns in the data but highly aggregate the data (heat maps) or are difficult to read due to overplotting (gaze plots). In this paper, we propose transforming eye movement data into a dynamic graph data structure to explore the visualization problem from a new perspective. By aggregating gaze trajectories of participants over time periods or Areas of Interest (AOIs), a fair trade-off between aggregation and details is achieved. We show that existing dynamic graph visualizations can be used to display the transformed data and illustrate the approach by applying it to eye tracking data recorded for investigating the readability of tree diagrams.","PeriodicalId":142459,"journal":{"name":"Proceedings of the Symposium on Eye Tracking Research and Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A dynamic graph visualization perspective on eye movement data\",\"authors\":\"Michael Burch, Fabian Beck, Michael Raschke, Tanja Blascheck, D. Weiskopf\",\"doi\":\"10.1145/2578153.2578175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During eye tracking studies, vast amounts of spatio-temporal data in the form of eye gaze trajectories are recorded. Finding insights into these time-varying data sets is a challenging task. Visualization techniques such as heat maps or gaze plots help find patterns in the data but highly aggregate the data (heat maps) or are difficult to read due to overplotting (gaze plots). In this paper, we propose transforming eye movement data into a dynamic graph data structure to explore the visualization problem from a new perspective. By aggregating gaze trajectories of participants over time periods or Areas of Interest (AOIs), a fair trade-off between aggregation and details is achieved. We show that existing dynamic graph visualizations can be used to display the transformed data and illustrate the approach by applying it to eye tracking data recorded for investigating the readability of tree diagrams.\",\"PeriodicalId\":142459,\"journal\":{\"name\":\"Proceedings of the Symposium on Eye Tracking Research and Applications\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Symposium on Eye Tracking Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2578153.2578175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2578153.2578175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在眼动追踪研究中,以眼球注视轨迹的形式记录了大量的时空数据。对这些时变数据集进行深入研究是一项具有挑战性的任务。可视化技术,如热图或凝视图,有助于发现数据中的模式,但高度汇总数据(热图),或者由于过度绘图(凝视图)而难以阅读。本文提出将眼动数据转换为动态图形数据结构,从新的角度探讨眼动数据的可视化问题。通过聚合参与者在一段时间内或兴趣区域(AOIs)的注视轨迹,实现了聚合和细节之间的公平权衡。我们展示了现有的动态图形可视化可以用来显示转换后的数据,并通过将其应用于为调查树形图的可读性而记录的眼动追踪数据来说明该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dynamic graph visualization perspective on eye movement data
During eye tracking studies, vast amounts of spatio-temporal data in the form of eye gaze trajectories are recorded. Finding insights into these time-varying data sets is a challenging task. Visualization techniques such as heat maps or gaze plots help find patterns in the data but highly aggregate the data (heat maps) or are difficult to read due to overplotting (gaze plots). In this paper, we propose transforming eye movement data into a dynamic graph data structure to explore the visualization problem from a new perspective. By aggregating gaze trajectories of participants over time periods or Areas of Interest (AOIs), a fair trade-off between aggregation and details is achieved. We show that existing dynamic graph visualizations can be used to display the transformed data and illustrate the approach by applying it to eye tracking data recorded for investigating the readability of tree diagrams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信