一种无人机倾斜图像的亚像素配准方法

Chengyi Wang, Jingbo Chen, Dong-xu He
{"title":"一种无人机倾斜图像的亚像素配准方法","authors":"Chengyi Wang, Jingbo Chen, Dong-xu He","doi":"10.1109/IGARSS.2016.7730919","DOIUrl":null,"url":null,"abstract":"Since UAV oblique sequence images have large differences in perspective, it is difficult to achieve fully automatic, highly accurate registration using conventional image registration methods. To solve this problem, we present a sub-pixel image registration method based on ASIFT. Position of match points is corrected using the weighted least squares algorithm affine model (WLSM) one by one. Characteristics are selected and initial parameters estimation is also done through adaptive maximum cross-correlation algorithm (NCC). Experiments show that the proposed method is superior to conventional methods, such as SIFT and ASIFT, and this Method can achieve sub-pixel level registration precision.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Sub-pixel registration method of UAV oblique images\",\"authors\":\"Chengyi Wang, Jingbo Chen, Dong-xu He\",\"doi\":\"10.1109/IGARSS.2016.7730919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since UAV oblique sequence images have large differences in perspective, it is difficult to achieve fully automatic, highly accurate registration using conventional image registration methods. To solve this problem, we present a sub-pixel image registration method based on ASIFT. Position of match points is corrected using the weighted least squares algorithm affine model (WLSM) one by one. Characteristics are selected and initial parameters estimation is also done through adaptive maximum cross-correlation algorithm (NCC). Experiments show that the proposed method is superior to conventional methods, such as SIFT and ASIFT, and this Method can achieve sub-pixel level registration precision.\",\"PeriodicalId\":179622,\"journal\":{\"name\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2016.7730919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7730919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于无人机斜序列图像视角差异较大,采用常规图像配准方法难以实现全自动高精度配准。为了解决这一问题,提出了一种基于ASIFT的亚像素图像配准方法。利用加权最小二乘仿射模型(WLSM)逐个校正匹配点的位置。通过自适应最大互相关算法(NCC)进行特征选择和初始参数估计。实验表明,该方法优于传统的SIFT和ASIFT方法,可以达到亚像素级的配准精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sub-pixel registration method of UAV oblique images
Since UAV oblique sequence images have large differences in perspective, it is difficult to achieve fully automatic, highly accurate registration using conventional image registration methods. To solve this problem, we present a sub-pixel image registration method based on ASIFT. Position of match points is corrected using the weighted least squares algorithm affine model (WLSM) one by one. Characteristics are selected and initial parameters estimation is also done through adaptive maximum cross-correlation algorithm (NCC). Experiments show that the proposed method is superior to conventional methods, such as SIFT and ASIFT, and this Method can achieve sub-pixel level registration precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信