压缩无线传感器网络通信的能量和寿命分析

Celalettin Karakus, A. Gurbuz, B. Tavlı
{"title":"压缩无线传感器网络通信的能量和寿命分析","authors":"Celalettin Karakus, A. Gurbuz, B. Tavlı","doi":"10.1109/SAS.2013.6493547","DOIUrl":null,"url":null,"abstract":"Improving the lifetime of Wireless Sensor Networks (WSNs) is directly related with the energy efficiency of computation and communication operations in the sensor nodes. By employing the concepts of Compressive Sensing (CS) theory it is possible to reconstruct a sparse signal with a certain number of random linear measurements, which is much less than the number of measurements necessary in conventional signal reconstruction techniques. In this study, we built an energy dissipation model to quantitatively compare the energy dissipation characteristics of CS and conventional signal processing techniques. This model is used to construct a Linear Programming (LP) framework that jointly captures the energy costs for computing and communication both for CS based techniques and conventional techniques. It is observed that CS prolongs the network lifetime for sparse signals.","PeriodicalId":309610,"journal":{"name":"2013 IEEE Sensors Applications Symposium Proceedings","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Energy and lifetime analysis of compressed Wireless Sensor Network communication\",\"authors\":\"Celalettin Karakus, A. Gurbuz, B. Tavlı\",\"doi\":\"10.1109/SAS.2013.6493547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving the lifetime of Wireless Sensor Networks (WSNs) is directly related with the energy efficiency of computation and communication operations in the sensor nodes. By employing the concepts of Compressive Sensing (CS) theory it is possible to reconstruct a sparse signal with a certain number of random linear measurements, which is much less than the number of measurements necessary in conventional signal reconstruction techniques. In this study, we built an energy dissipation model to quantitatively compare the energy dissipation characteristics of CS and conventional signal processing techniques. This model is used to construct a Linear Programming (LP) framework that jointly captures the energy costs for computing and communication both for CS based techniques and conventional techniques. It is observed that CS prolongs the network lifetime for sparse signals.\",\"PeriodicalId\":309610,\"journal\":{\"name\":\"2013 IEEE Sensors Applications Symposium Proceedings\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Sensors Applications Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2013.6493547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Sensors Applications Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2013.6493547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提高无线传感器网络(WSNs)的寿命直接关系到传感器节点计算和通信操作的能量效率。利用压缩感知(CS)理论的概念,可以用一定数量的随机线性测量来重建稀疏信号,这比传统信号重建技术所需的测量数量要少得多。在本研究中,我们建立了能量耗散模型,定量比较了CS和传统信号处理技术的能量耗散特性。该模型用于构建线性规划(LP)框架,该框架共同捕获基于CS的技术和传统技术的计算和通信的能源成本。观察到CS延长了稀疏信号的网络生存期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy and lifetime analysis of compressed Wireless Sensor Network communication
Improving the lifetime of Wireless Sensor Networks (WSNs) is directly related with the energy efficiency of computation and communication operations in the sensor nodes. By employing the concepts of Compressive Sensing (CS) theory it is possible to reconstruct a sparse signal with a certain number of random linear measurements, which is much less than the number of measurements necessary in conventional signal reconstruction techniques. In this study, we built an energy dissipation model to quantitatively compare the energy dissipation characteristics of CS and conventional signal processing techniques. This model is used to construct a Linear Programming (LP) framework that jointly captures the energy costs for computing and communication both for CS based techniques and conventional techniques. It is observed that CS prolongs the network lifetime for sparse signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信