使用定性分析分割动作捕捉数据

Durell Bouchard, N. Badler
{"title":"使用定性分析分割动作捕捉数据","authors":"Durell Bouchard, N. Badler","doi":"10.1145/2822013.2822039","DOIUrl":null,"url":null,"abstract":"Many interactive 3D games utilize motion capture for both character animation and user input. These applications require short, meaningful sequences of data. Manually producing these segments of motion capture data is a laborious, time-consuming process that is impractical for real-time applications. We present a method to automatically produce semantic segmentations of general motion capture data by examining the qualitative properties that are intrinsic to all motions, using Laban Movement Analysis (LMA). LMA provides a good compromise between high-level semantic features, which are difficult to extract for general motions, and low-level kinematic features, which often yield unsophisticated segmentations. Our method finds motion sequences which exhibit high output similarity from a collection of neural networks trained with temporal variance. We show that segmentations produced using LMA features are more similar to manual segmentations, both at the frame and the segment level, than several other automatic segmentation methods.","PeriodicalId":222258,"journal":{"name":"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games","volume":"43 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Segmenting motion capture data using a qualitative analysis\",\"authors\":\"Durell Bouchard, N. Badler\",\"doi\":\"10.1145/2822013.2822039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many interactive 3D games utilize motion capture for both character animation and user input. These applications require short, meaningful sequences of data. Manually producing these segments of motion capture data is a laborious, time-consuming process that is impractical for real-time applications. We present a method to automatically produce semantic segmentations of general motion capture data by examining the qualitative properties that are intrinsic to all motions, using Laban Movement Analysis (LMA). LMA provides a good compromise between high-level semantic features, which are difficult to extract for general motions, and low-level kinematic features, which often yield unsophisticated segmentations. Our method finds motion sequences which exhibit high output similarity from a collection of neural networks trained with temporal variance. We show that segmentations produced using LMA features are more similar to manual segmentations, both at the frame and the segment level, than several other automatic segmentation methods.\",\"PeriodicalId\":222258,\"journal\":{\"name\":\"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games\",\"volume\":\"43 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2822013.2822039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2822013.2822039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

许多交互式3D游戏利用动作捕捉来完成角色动画和用户输入。这些应用程序需要短而有意义的数据序列。手动生成这些动作捕捉数据段是一个费力、耗时的过程,对于实时应用来说是不切实际的。我们提出了一种方法,通过使用Laban运动分析(LMA)检查所有运动固有的定性属性,自动生成一般运动捕获数据的语义分割。LMA在高级语义特征(一般运动难以提取)和低级运动特征(通常产生不复杂的分割)之间提供了很好的折衷。我们的方法从经过时间方差训练的神经网络集合中找到具有高输出相似性的运动序列。我们表明,与其他几种自动分割方法相比,使用LMA特征产生的分割在帧和段级别上都更类似于手动分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmenting motion capture data using a qualitative analysis
Many interactive 3D games utilize motion capture for both character animation and user input. These applications require short, meaningful sequences of data. Manually producing these segments of motion capture data is a laborious, time-consuming process that is impractical for real-time applications. We present a method to automatically produce semantic segmentations of general motion capture data by examining the qualitative properties that are intrinsic to all motions, using Laban Movement Analysis (LMA). LMA provides a good compromise between high-level semantic features, which are difficult to extract for general motions, and low-level kinematic features, which often yield unsophisticated segmentations. Our method finds motion sequences which exhibit high output similarity from a collection of neural networks trained with temporal variance. We show that segmentations produced using LMA features are more similar to manual segmentations, both at the frame and the segment level, than several other automatic segmentation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信