一种基于关键词的交互式会议摘要方法

K. Riedhammer, Benoit Favre, Dilek Z. Hakkani-Tür
{"title":"一种基于关键词的交互式会议摘要方法","authors":"K. Riedhammer, Benoit Favre, Dilek Z. Hakkani-Tür","doi":"10.1109/SLT.2008.4777863","DOIUrl":null,"url":null,"abstract":"Rooted in multi-document summarization, maximum marginal relevance (MMR) is a widely used algorithm for meeting summarization (MS). A major problem in extractive MS using MMR is finding a proper query: the centroid based query which is commonly used in the absence of a manually specified query, can not significantly outperform a simple baseline system. We introduce a simple yet robust algorithm to automatically extract keyphrases (KP) from a meeting which can then be used as a query in the MMR algorithm. We show that the KP based system significantly outperforms both baseline and centroid based systems. As human refined KPs show even better summarization performance, we outline how to integrate the KP approach into a graphical user interface allowing interactive summarization to match the user's needs in terms of summary length and topic focus.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A keyphrase based approach to interactive meeting summarization\",\"authors\":\"K. Riedhammer, Benoit Favre, Dilek Z. Hakkani-Tür\",\"doi\":\"10.1109/SLT.2008.4777863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rooted in multi-document summarization, maximum marginal relevance (MMR) is a widely used algorithm for meeting summarization (MS). A major problem in extractive MS using MMR is finding a proper query: the centroid based query which is commonly used in the absence of a manually specified query, can not significantly outperform a simple baseline system. We introduce a simple yet robust algorithm to automatically extract keyphrases (KP) from a meeting which can then be used as a query in the MMR algorithm. We show that the KP based system significantly outperforms both baseline and centroid based systems. As human refined KPs show even better summarization performance, we outline how to integrate the KP approach into a graphical user interface allowing interactive summarization to match the user's needs in terms of summary length and topic focus.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

最大边际相关性(MMR)是一种基于多文档摘要的会议摘要算法。在使用MMR的提取MS中,一个主要问题是找到一个合适的查询:基于质心的查询通常在没有手动指定查询的情况下使用,不能明显优于简单的基线系统。我们引入了一种简单而稳健的算法来自动从会议中提取关键短语(KP),然后将其用作MMR算法中的查询。我们表明,基于KP的系统显着优于基线和基于质心的系统。由于人工精炼的KP显示出更好的摘要性能,我们概述了如何将KP方法集成到图形用户界面中,从而允许交互式摘要在摘要长度和主题焦点方面满足用户的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A keyphrase based approach to interactive meeting summarization
Rooted in multi-document summarization, maximum marginal relevance (MMR) is a widely used algorithm for meeting summarization (MS). A major problem in extractive MS using MMR is finding a proper query: the centroid based query which is commonly used in the absence of a manually specified query, can not significantly outperform a simple baseline system. We introduce a simple yet robust algorithm to automatically extract keyphrases (KP) from a meeting which can then be used as a query in the MMR algorithm. We show that the KP based system significantly outperforms both baseline and centroid based systems. As human refined KPs show even better summarization performance, we outline how to integrate the KP approach into a graphical user interface allowing interactive summarization to match the user's needs in terms of summary length and topic focus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信