分布式查询优化的自适应技术

Clement T. Yu, L. Lilien, Keh-Chang Guh, M. Templeton, David Brill, Arbee L. P. Chen
{"title":"分布式查询优化的自适应技术","authors":"Clement T. Yu, L. Lilien, Keh-Chang Guh, M. Templeton, David Brill, Arbee L. P. Chen","doi":"10.1109/ICDE.1986.7266209","DOIUrl":null,"url":null,"abstract":"We propose new adaptive techniques for distributed query optimization. These techniques are divided into two groups: the ones that improve efficiency of query execution (directly) and the ones that improve cost estimations for query execution strategies. Some of the proposed techniques utilize semantic information and knowledge acquisition to adapt to the environment. The latter, in contrast to the former, is not a well-established idea. This is a disturbing fact since knowledge acquisition can give significant improvements in performance of a query optimization algorithm. Performing analysis manually is extrernely time consuming and tedious. Therefore, some learning capacity should be added to the system. Some knowledge acquisition techniques that result in adaptive (dynamic) adjustment to run-time changes are proposed.","PeriodicalId":415748,"journal":{"name":"1986 IEEE Second International Conference on Data Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Adaptive techniques for distributed query optimization\",\"authors\":\"Clement T. Yu, L. Lilien, Keh-Chang Guh, M. Templeton, David Brill, Arbee L. P. Chen\",\"doi\":\"10.1109/ICDE.1986.7266209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose new adaptive techniques for distributed query optimization. These techniques are divided into two groups: the ones that improve efficiency of query execution (directly) and the ones that improve cost estimations for query execution strategies. Some of the proposed techniques utilize semantic information and knowledge acquisition to adapt to the environment. The latter, in contrast to the former, is not a well-established idea. This is a disturbing fact since knowledge acquisition can give significant improvements in performance of a query optimization algorithm. Performing analysis manually is extrernely time consuming and tedious. Therefore, some learning capacity should be added to the system. Some knowledge acquisition techniques that result in adaptive (dynamic) adjustment to run-time changes are proposed.\",\"PeriodicalId\":415748,\"journal\":{\"name\":\"1986 IEEE Second International Conference on Data Engineering\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1986 IEEE Second International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.1986.7266209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1986 IEEE Second International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1986.7266209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

我们为分布式查询优化提出了新的自适应技术。这些技术分为两组:一组(直接)提高查询执行效率,另一组改进查询执行策略的成本估计。提出的一些技术利用语义信息和知识获取来适应环境。与前者相比,后者并不是一个公认的观点。这是一个令人不安的事实,因为知识获取可以显著提高查询优化算法的性能。手动执行分析非常耗时且乏味。因此,应该给系统增加一定的学习能力。提出了一些知识获取技术,可以对运行时的变化进行自适应(动态)调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive techniques for distributed query optimization
We propose new adaptive techniques for distributed query optimization. These techniques are divided into two groups: the ones that improve efficiency of query execution (directly) and the ones that improve cost estimations for query execution strategies. Some of the proposed techniques utilize semantic information and knowledge acquisition to adapt to the environment. The latter, in contrast to the former, is not a well-established idea. This is a disturbing fact since knowledge acquisition can give significant improvements in performance of a query optimization algorithm. Performing analysis manually is extrernely time consuming and tedious. Therefore, some learning capacity should be added to the system. Some knowledge acquisition techniques that result in adaptive (dynamic) adjustment to run-time changes are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信