{"title":"二阶Volterra滤波器(SOVF)在Xilinx Virtex-E FPGA上的可分离实现","authors":"M. Al-Mistarihi","doi":"10.1109/FPL.2008.4630001","DOIUrl":null,"url":null,"abstract":"Post-beamforming second order Volterra filter (SOVF) was previously introduced for decomposing the pulse echo ultrasonic radio-frequency (RF) signal into its linear and quadratic components. Using singular value decomposition (SVD), an optimal minimum-norm least squares algorithm for deriving the coefficients of the linear and quadratic kernels of the SOVF was developed and verified. The ldquoseparablerdquo implementation algorithm of a SOVF based on the eigenvalue decomposition (EVD) of the quadratic kernel was introduced and verified. In this paper, the ldquoSeparablerdquo version of a second order Volterra filter is implemented in Xilinx Virtex-E FPGA. Parallel operation, efficient use of instructions per task, and data streaming capability of FPGA are identified. This implementation should allow for real-time implementation of quadratic filtering on commercial ultrasound scanners.","PeriodicalId":137963,"journal":{"name":"2008 International Conference on Field Programmable Logic and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Separable implementation of the second order Volterra filter (SOVF) in Xilinx Virtex-E FPGA\",\"authors\":\"M. Al-Mistarihi\",\"doi\":\"10.1109/FPL.2008.4630001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Post-beamforming second order Volterra filter (SOVF) was previously introduced for decomposing the pulse echo ultrasonic radio-frequency (RF) signal into its linear and quadratic components. Using singular value decomposition (SVD), an optimal minimum-norm least squares algorithm for deriving the coefficients of the linear and quadratic kernels of the SOVF was developed and verified. The ldquoseparablerdquo implementation algorithm of a SOVF based on the eigenvalue decomposition (EVD) of the quadratic kernel was introduced and verified. In this paper, the ldquoSeparablerdquo version of a second order Volterra filter is implemented in Xilinx Virtex-E FPGA. Parallel operation, efficient use of instructions per task, and data streaming capability of FPGA are identified. This implementation should allow for real-time implementation of quadratic filtering on commercial ultrasound scanners.\",\"PeriodicalId\":137963,\"journal\":{\"name\":\"2008 International Conference on Field Programmable Logic and Applications\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Field Programmable Logic and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2008.4630001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Field Programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2008.4630001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Separable implementation of the second order Volterra filter (SOVF) in Xilinx Virtex-E FPGA
Post-beamforming second order Volterra filter (SOVF) was previously introduced for decomposing the pulse echo ultrasonic radio-frequency (RF) signal into its linear and quadratic components. Using singular value decomposition (SVD), an optimal minimum-norm least squares algorithm for deriving the coefficients of the linear and quadratic kernels of the SOVF was developed and verified. The ldquoseparablerdquo implementation algorithm of a SOVF based on the eigenvalue decomposition (EVD) of the quadratic kernel was introduced and verified. In this paper, the ldquoSeparablerdquo version of a second order Volterra filter is implemented in Xilinx Virtex-E FPGA. Parallel operation, efficient use of instructions per task, and data streaming capability of FPGA are identified. This implementation should allow for real-time implementation of quadratic filtering on commercial ultrasound scanners.