基于模糊ART神经网络的混合源文档聚类系统

M. Rojček, I. Mokris
{"title":"基于模糊ART神经网络的混合源文档聚类系统","authors":"M. Rojček, I. Mokris","doi":"10.1109/ICSSE.2013.6614670","DOIUrl":null,"url":null,"abstract":"The article presents a model for text document clustering based on Fuzzy ART neural network with two separate network segments. The first segment (Internet) enables clustering for the classification of documents into new categories, and the second segment (intranet) enables the modified Fuzzy ART algorithm to assign documents into existing categories. The article observe behavior of the model based on Fuzzy ART network, into which entering the different strategies in the different segments of synthetic text documents.","PeriodicalId":124317,"journal":{"name":"2013 International Conference on System Science and Engineering (ICSSE)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"System for document clustering from mixed sources based on Fuzzy ART neural network\",\"authors\":\"M. Rojček, I. Mokris\",\"doi\":\"10.1109/ICSSE.2013.6614670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents a model for text document clustering based on Fuzzy ART neural network with two separate network segments. The first segment (Internet) enables clustering for the classification of documents into new categories, and the second segment (intranet) enables the modified Fuzzy ART algorithm to assign documents into existing categories. The article observe behavior of the model based on Fuzzy ART network, into which entering the different strategies in the different segments of synthetic text documents.\",\"PeriodicalId\":124317,\"journal\":{\"name\":\"2013 International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE.2013.6614670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2013.6614670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于模糊ART神经网络的文本文档聚类模型。第一部分(Internet)支持聚类,将文档分类到新的类别中,第二部分(intranet)支持修改后的模糊ART算法将文档分配到现有的类别中。本文观察了基于模糊ART网络的模型的行为,其中在合成文本文档的不同片段中加入了不同的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
System for document clustering from mixed sources based on Fuzzy ART neural network
The article presents a model for text document clustering based on Fuzzy ART neural network with two separate network segments. The first segment (Internet) enables clustering for the classification of documents into new categories, and the second segment (intranet) enables the modified Fuzzy ART algorithm to assign documents into existing categories. The article observe behavior of the model based on Fuzzy ART network, into which entering the different strategies in the different segments of synthetic text documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信